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Abstract. This study presents a new prediction model for estimating the size of silver
nanoparticles (AgNPs) prepared by green synthesis via Gene Expression Programming
(GEP). First, 30 di�erent experiments were carried out to construct the GEP models. Plant
extract, reaction temperature, concentration of silver nitrate (AgNO3), and stirring time
parameters were considered as input variables and the size of AgNPs was selected as the
output variable. The collected experimental data were randomly divided into eight testing
sets and 22 training sets for further analysis. By considering the correlation coe�cient (R2),
Mean Absolute Error (MAE), and Root Relative Square Error (RRSE) as the criteria, the
performances of proposed models by GEP were compared. Finally, the best model (i.e.,
GEP-1) with R2 = 0:9961, MAE = 0.2545, and RRSE = 0.0668 was proposed as a new
model with simpli�ed mathematical expressions to estimate the size of AgNPs. The results
of sensitivity analysis showed that the amount of plant extract, the concentration of AgNO3,
stirring time, and reaction temperature were the most e�ective parameters on the size of
AgNPs, respectively. The proposed model can be extended for a wide range of applications
and it provides the possibility of minimum materials consumption in the preparation of the
lowest-size AgNPs with regard to practical or economic constraints.

© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Silver nanoparticles (AgNPs) have desirable physi-
cal/chemical properties, including favorable optical
and thermal characteristics as well as high electrical
conductivity, and signi�cant biological properties [1-
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3]. There are various chemical, physical, and biolog-
ical methods for the synthesis of AgNPs. However,
environmental hazards and high cost are the main
drawbacks of the former two [4,5]. On the contrary,
green synthesis has considerable advantages for the
synthesis of AgNPs. Consequently, several researchers
have tried to optimize the practical parameters of Ag-
NPs by green synthesis. However, unfortunately, this
technique su�ers from complicated interactions among
the practical parameters as well as prolonged synthesis
time [6]. According to the literature [7], particle
size, composition, microstructure, and morphology of
AgNPs signi�cantly a�ect their unique features. As
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a consequence, employment of advanced optimization
as well as modeling approaches to dictate the optimal
properties of AgNPs is a hot topic for various studies.
Accordingly, development of a detailed accurate model
for the prediction of the size AgNPs will be so bene�-
cial. The main merit of Gene Expression Programming
(GEP) technique is its inherent capability to propose
an equation as a mathematical function. This approach
provides a systematic and e�cient methodology to
optimize the performance and quality of complicated
engineering issues [8,9]. The main contribution of the
current study is using GEP algorithm to estimate the
particle size of AgNPs with regard to experimental
data, including plant extract (Pe), temperature of reac-
tion (Tr), stirring time (St), and molar concentration
of AgNPs (Mc), as e�ective practical parameters. A
sensitivity analysis was performed to evaluate the e�ect
of each input variable on the size of nanoparticles in the
investigated range.

2. Data collection and method of analysis

2.1. Data set and input/output selection
Determining the important variables of green synthesis
that a�ect the size of AgNPs is the main part of
optimization and modeling. Shabanzadeh et al. [7]
investigated the green synthesis of AgNPs using Vi-
tax negundo L. extract by Arti�cial Neural Networks
(ANNs). They mentioned that the AgNPs size was
mainly a�ected by four practical parameters, namely
Pe, Tr, St, and Mc. Table 1 summarizes the details
of 30 practical data that repeated based on the op-
erational condition of literature [7]. These data have
randomly been divided into testing (eight cases) and
training (22 cases) sets for the development of various
GEP models.

2.2. Gene Expression Programming (GEP)
Genetic Programming (GP) is an enhanced version
of Genetic Algorithm (GA) proposed by Koza [10].
Moreover, to overcome the limitations of both GA
and GP algorithms, a new population-based evolution-
ary algorithm, named Gene Expression Programming
(GEP), was introduced by Ferreira [11-13]. The
inherent ability of GEP to develop an equation by
considering independent practical parameters as input
for estimating a prede�ned output with acceptable ac-
curacy distinguishes it from other modeling approaches
[14-17]. The main components of GEP are terminal
set, termination condition, �tness function, control
parameters, and function set [10]. Figure 1 illustrates
the 
owchart of a typical GEP. As observed, the main
component of GEP consists in the genetic operators
[18-20].

The operators of a gene function at level of
chromosomes, hence promoting genetic diversity. It

Figure 1. Flowchart of a GEP.

is noteworthy that GEP has a multi-gene nature
and, consequently, each chromosome for one or more
genes is a mathematical function. There are various
methods to represent GEP output, including Karva
language (the gene language), Expression Tree (ET),
and mathematical functions [21-23]. Figure 2 shows a
typical GEP output for an encoded chromosome with
two genes as a linear string. Observing Figure 2 from
left to right at the upper part shows the conversion of
Karva language to ET. On the other hand, from right to
left at the bottom, the �gure illustrates the conversion
of ET to a mathematical function [24].

To validate the randomly selected genome, the
head-tail method was employed. In this methodology,
every gene has two elements, i.e. a head and a tail. The
former is composed of terminal and function, while the
latter contains only the terminal symbols [17,25]. The
GEP designer determines the head length (h) and the
length of the tail (t) is calculated by Eq. (1) [26]:

t = h(nmax � 1) + 1; (1)

where nmax is the maximum number of arguments.
GEP is performed in �ve major steps:

1. Selection of the �tness function (fi) through Eq. (2)
[27]:

fi =
CtX
j=1

(M� ��C(ij) � Tj j); (2)

where M is the selection range, C(i;j) represents
the return value of chromosome i by employing the
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Table 1. Experimental data series for the synthesis of silver nanoparticles (AgNPs) by green synthesis [7] (plant extract
(Pe), temperature of reaction (Tr), stirring time (St), and molar concentration of AgNPs (Mc)).

No. Pe� (gr)
in 100 ml water

Tr��

(�C)
St���

(hr)
Mc (mole)

in 100 mL water
AgNPs size

(nm)

1 0.10 25 48 0.1 27

2 0.10 30 48 0.2 28

3 0.10 40 48 0.5 29

4 0.10 50 48 1.0 29

5 0.10 60 48 1.5 31

6 0.10 70 24 2.0 32

7 0.25 25 24 0.1 25

8 0.25 30 24 0.2 26

9 0.25 40 24 0.5 26

10 0.25 50 24 1.0 27

11 0.25 60 12 1.5 27

12 0.25 70 12 2.0 29

13 0.50 25 12 0.1 18

14 0.50 30 12 0.2 19

15 0.50 40 12 0.5 21

16 0.50 50 6 1.0 21

17 0.50 60 6 1.5 24

18 0.50 70 6 2.0 24

19 0.75 25 6 0.1 15

20 0.75 30 6 0.2 16

21 0.75 40 3 0.5 18

22 0.75 50 3 1.0 19

23 0.75 60 3 1.5 20

24 0.75 70 3 2.0 21

25 1.00 25 3 0.1 16

26 1.00 30 1 0.2 16

27 1.00 40 1 0.5 17

28 1.00 50 1 1.0 18

29 1.00 60 1 1.5 18

30 1.00 70 1 2.0 19

�tness function, and Tj stands for the target value
corresponding to the �tness function j. If for all
cases of j, the precision, i.e. jC(i;j) � Tj j is less
than or equal to 0.01, then fi = fmax = Ct �M .
In this study, M is set to 100 and, consequently,
fmax = 1000. In this way, the system is able to �nd
the optimal solution on its own [28,29];

2. Selection of (a) terminals (S), (b) set of
functions (F ) to generate the chromosomes as
\F" = (Pe; Tr; St;Mc), (c) arithmetic operators
(+;�; �; =), and (d) mathematical functions of Exp,
pow10, Ln, Abs, X2, X3, X4, 3Rt, Atan, and Cos;

3. Selection of the chromosomal architecture by de-
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Figure 2. Representation of GEP output for a typical chromosome with two genes through mathematical expression,
Expression Tree (ET), and Karva language.

Table 2. Prede�ned Gene Expression Progreamming (GEP) parameters for the most appropriate GEP models in the
present study.

Model Number of chromosomes Head size Number of genes Used function

GEP-1 24 10 6 +, �; �; =; Exp; x2; 3Rt;Atan

GEP-2 28 10 5 +, �; �; =; Exp; x2; x3; x4

GEP-3 36 10 6 +, �; �; =; Exp; x2; 3Rt;Atan

GEP-4 30 9 4 +, �; �; =; Exp; Ln; Pow 10; Abs; x4

GEP-5 19 7 3 +, �; �; =; Exp; x2; 3Rt

GEP-6 25 4 3 +, �; Pow 10; x2; 3Rt;Cos

GEP-7 30 3 4 +, �; �; x2; 3Rt

GEP-8 25 3 3 +, �; �; Pow 10; x2; Cos

GEP-9 20 4 3 + , �; �; x2; x3

termining the number of genes and chromosomes
and then, enhancing the length of heads one after
another in every run. By considering performance
as the criterion, the testing and training processes
were monitored. Table 2 presents some trials for
GEP modeling;

4. Selection of the linking function;
5. Determination of genetic operators as [10,28]:p

Mutation [17,30]: The most e�cient operator
within the length of a chromosome with intrinsic
modi�cation power. Mutation is able to change
the terminal or function in the head and the
terminal in the tail;p
Inversion [17,30]: Activated in the head of a
chromosome. It is able to reverse a fragment
with the length of 1 to 3;p
Transposition [17, 31]: Including three types

of Insertion Sequence (IS) transposition, re-
sponsible for the transportation of a fragment
or terminal from one position to the head or
other genes; Root Insertion Sequence (RIS)
transposition, responsible for transportation of
a fragment by preserving its function from the
�rst position to the changed root; and gene
transposition, responsible for transporting the
operators of all genes to the beginning of the
chromosomes.

Table 3 shows the range of GEP parameters for
the proposed models in this study. The powerful
GeneXproTools 5.0 software was employed to model
the relation between the practical parameters of green
synthesis and the particle size of AgNPs. SPSS soft-
ware (version 25) was employed to analyze the collected
data as input variables. This study tried to predict the
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Table 3. Detailed features of Gene Expression
Programming (GEP) for modeling.

De�nition of GEP parameter Value

Number of chromosomes 19-30

Head size 3-10

Number of genes 3-6

Linking function Addition

Fitness function error type RRSE

Constant per gene 10

Mutation rate 0.0014

Inversion rate 0.5

One-point recombination rate 0.3

Two-point recombination rate 0.3

Gene recombination rate 0.3

Gene transposition rate 0.3

IS transposition 0.5

RIS transposition 0.5

size of AgNPs prepared via green synthesis through the
GEP approach. Hence, the practical parameters, i.e.,
Pe, Tr, St, and Mc, were selected as input and the size
of AgNPs as output (Table 1). Among the 30 collected
experimental data, 22 were randomly selected as the
training set and the remaining eight were employed for
testing to develop the GEP models of prediction.

3. Result and discussion

The presence of outlier practical data negatively a�ect
clear understanding of the relationships between vari-
ables. Hence, identi�cation and elimination of outlier
data from the original data set leads to higher accuracy
during GEP analysis. There are various techniques
to detect the outliers, e.g., statistical and box plot
approaches [32]. Figure 3 indicates the box plot for four

Figure 3. Boxplots of practical parameters for the green
synthesis of AgNPs (plant extract (Pe), temperature of
reaction (Tr), stirring time (St), and molar concentration
of AgNPs (Mc)).

practical parameters during the preparation of AgNPs
via green synthesis. The medians of the data sets for
Pe and Tr, which are situated in the center of the box,
indicate their symmetric distribution. On the other
hand, the box plots for St and Mc are inclined towards
the bottom, that is, the boxes shift to the bottom
whisker. This indicates that most of the values for the
data are small with a few exceptions with large values.
In these cases, the average is higher than the median
and close to the upper whisker. It is noteworthy that all
practical parameters in the present study do not have
any outliers. Table 4 statistically presents the input
and output data utilized in this study.

To determine the magnitude and direction of the
relationships between practical parameters, Bivariate
Correlation Analysis (BCA) was employed. BCA �rst
performs a careful analysis of the way of measuring
the practical data and then, determines any highly
correlated pairs. Highly negative or positive correlation
coe�cients among the pairs decrease the accuracy of
the developed GEP model, signi�cantly, and compli-
cate the evolving issues in explaining the e�ect of
explanatory practical parameters on the size of AgNPs
as the outcome. For example, in case of signi�cant
interdependency between the variables, the e�ect of
each input parameter may be exaggerated, resulting
in the evolution of multi collinearity [33]. Table 5
presents the correlation matrix of practical parameters
by calculating of Pearson's coe�cient. As indicated
in the table, there are not any signi�cant correlations
between the independent variables of Pe, Tr, and Mc.
However, there is considerable dependency between the
Mc and Tr as well as St and Pe.

Table 4. Explanation of the statistical distribution of practical parameters in the development of Gene Expression
Programming (GEP) models.

Parameter Unit Minimum Maximum Mean Standard deviation

Pe gr 0.1 1 0.52 0.332

Tr �C 25 70 45.833 16.192

St hr 1 48 15.666 16.595

Mc mL 0.1 2 0.883 0.703
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Table 5. Correlation coe�cients of the practical variables
for green synthesis of AgNPs; experimental data series for
the synthesis of silver nanoparticles (AgNPs) by green
synthesis [7] (plant extract (Pe), temperature of reaction
(Tr), stirring time (St), and molar concentration of
AgNPs (Mc)).

Parameters Pe Tr St Mc

Pe 1 0 {0.845 0
Tr 0 1 {0.186 0.993
St {0.845 {0.186 1 {0.191
Mc 0 0.993 {0.191 1

To study the multi collinearity between the prac-
tical parameters, a Principal Component Analysis
(PCA) can be employed. PCA is an approach to
dimension reduction in which the correlated variables
are transferred from a multi-dimensional space to a
lower-dimension space to remove the correlation of
variables. The uncorrelated variables in the new space
are called the principal component [34-36]. To ensure
the possibility of performing PCA, the Kaiser Mayer
Olkin (KMO) [37] factor should be adopted as the as
criterion, calculated via Eq. (3).

KMO =

P
i 6=j
P
rij2P

i6=j
P
rij2 +

P
i 6=j
P
aij2 ; (3)

where rij and aij are as the correlation coe�cient and
the practical correlation coe�cient of variables i and
j, respectively. When the KMO factor is lower than
0.7, the dependency between the practical parameters
is unreal and the data are not appropriate for PCA
analysis [32]. The KMO factor the in current study
was estimated at 0.502. Therefore, there was no need to

use PCA for the correction of the interaction between
the practical parameters. The KMO analysis revealed
that the presence of considerable dependency between
some of the practical parameters in Table 4 was a
consequence of the nature of the BCA analysis, not a
causality or linear association of Mc with Tr or St with
Pe. Thus, the practical parameters are independent
from each other and appropriate for the subsequent
analysis by GEP.

Validation of every developed model was per-
formed by considering the coe�cient of determination
(R2), Mean Absolute Error (MAE), and Root Relative
Square Error (RRSE) as the criteria, de�ned through
Eqs. (4)-(6) [38].

R2 =
(n
P
tioi �P ti

P
oi)2

(n
P
ti2 � (

P
ti)2)(n

P
oi2 � (

P
oi)2 ; (4)

RRSE =

vuuuuut
nP
i=1

(ti� oi)2

nP
i=1

(ti� 1
n

nP
i=1

ti)
2 ; (5)

MAE =

nP
i=1
jti � oij
n

; (6)

where t is the target value, o is the predicted value, and
n is the number of data within the testing and training
phases. R2 closer to 1 and MAE and RRSE closer to
zero indicate better �t of the developed model [39]. The
statistical characteristics of nine appropriate models for
the training and testing data sets are given in Table 6.

As indicated, the values of R2 for the proposed
model range between 0.9826{0.9983 and 0.9798{0.9963

Table 6. Correlation coe�cient (R2), Mean Absolute Error (MAE), and Root Relative Square Error (RRSE) amounts for
nine appropriate GEP models.

R2 Error

Training Testing

No. Training Testing MAE RRSE MAE RRSE

GEP-1 0.9983 0.9961 0.1403 0.041 0.2545 0.0668

GEP-2 0.9902 0.9798 0.4055 0.0988 0.6428 0.1616

GEP-3 0.9954 0.9963 0.2586 0.0683 0.3193 0.0951

GEP-4 0.9905 0.9930 0.3834 0.0971 0.4185 0.1026

GEP-5 0.9857 0.9895 0.5101 0.1195 0.4141 0.1129

GEP-6 0.9854 0.9915 0.4795 0.1206 0.4877 0.1274

GEP-7 0.9826 0.9906 0.5220 0.1316 0.5018 0.1297

GEP-8 0.9855 0.9865 0.4724 0.1200 0.5310 0.1450

GEP-9 0.9827 0.9884 0.5153 0.1316 0.5138 0.1342
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Figure 4. Various statistical indices for training and testing data series in Gene Expression Programming (GEP) models:
(a) Correlation coe�cient (R2), (b) Mean Absolute Error (MAE), and (c) Root Relative Square Error (RRSE).

Figure 5. Expression Tree (ET) of the GEP-1 model.

in the training and testing phases, respectively. More-
over, the minimum amounts of MAE and RRSE are
equal to 0.1403 and 0.041 in the training phase and
0.2545 and 0.0668 in the testing phase, respectively.
Figure 4 compares the values of R2, MAE, and RRSE
for nine better GEP models. GEP-1, GEP-3, and GEP-

4 show higher accuracies than other models for the
prediction of AgNPs size.

Table 7 summarizes the mentioned nine better
GEP models. The relatively large size of GEP models
shows the complicated space for the practical pa-
rameters of green synthesis. Figures 5-7 illustrated
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Table 7. The equations extracted from the nine Gene Expression Programming (GEP) models with experimental data
series for the synthesis of silver nanoparticles (AgNPs) through green synthesis [7] (plant extract (Pe), temperature of
reaction (Tr), stirring time (St), and molar concentration of AgNPs (Mc)).

GEP-1 42:704� 2Pe+ Pe4 + 1:302(Pe
1
3 + Pe2) + 16Pe4

�14:114Mc(�4:65+St)+0:474St2 � 85:753
Tr +A tan[0:336Mc� 0:336Pe

�20:578A tan[Pe] +A tan[Mc2(�10:094 + St)2] +A tan[(� 0:872
St2 +A tan [Mc]

1
3 )2]

GEP-2 37:234 + 2:0295Mc+ Pe(�28:276 + Pe(11:709 + Pe)) + 3:136
�4:63� 2:262

Mc � 10:414
St +Tr

GEP-3 29:608� 2Pe+ Pe4 + 16Pe4
48:178Mc

Pe +(�1:248+St)2
� 48:423

Tr +A tan[0:809Mc� 0:809Pe]� 20:784A tan[Pe]

GEP-4 15:751� 0:0837eMc + e�6:062Pe + 24:328e�10Pe+2Pe �Mc� 2Pe+ 0:113Tr(8:738+Tr
St )Abs[St]

0:55+Tr

+Abs[�0:802 +Mc� Pe+ St]

GEP-5 24:692� 3:107Mc+ Pe(�29:792 + 14:538Pe) + 0:23Tr

GEP-6 10:253 + 10Cos[Pe
1
3 ] + 10Cos[2Pe] + 2:172Mc+ Pe

GEP-7 30:576 + 2:221Mc+ Pe(�29:14 + 13:584Pe)

GEP-8 29:938 + 2:148Mc+ (�23:381 + 0:974� 10Pe � Pe)Pe

GEP-9 10:608 + 2Mc+ 10:236(1:397� Pe)2 + Pe+ 2Pe3

Figure 6. Expression Tree (ET) of the GEP-3 model.
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Figure 7. ET of the GEP-4 model.

Figure 8. Comparison of actual and predicted values of AgNPs size by GEP-1, GEP-3, and GEP-4 for (a) the training
phase and (b) the testing phase.

the sub-ETs of GEP-1, GEP-3, and GEP-4 models,
respectively. The number of genes (sub � ETs) is
6 for GEP-1, 8 for GEP-2, 6 for GEP-3, and 4 for
GEP-4 models. Suppose m is the maximum number of
iterations, n is the number of chromosomes, and O(e)
indicates the complexity of each GEP model. Then,
time complexity of our strategy is O(mne), since in
each iteration, the GEP model is executed for each
chromosome.

Table 8 compares the actual and predicted sizes
of AgNPs for GEP-1, GEP-3, and GEP-4 models.
The results con�rm that the proposed models are
unable to predict the size of AgNPs with an acceptable
precision.

Figure 8 illustrates the actual and predicted
values of AgNPs size for GEP-1, GEP-3, and GEP-
4 in the testing and training phases. As shown,
there is reasonable agreement between the experimen-
tal and predicted values for the GEP-1, GEP-3, and
GEP-4, especially in the training phase. However,
some deviations are observed from the linear trend,
especially in GEP-3 and GEP-4 during the testing
phase. Accordingly, GEP-1 is proposed as the most
appropriate model for the estimation of the size of
AgNPs prepared by green synthesis.

A sensitivity analysis is performed by changing
an output/input and keeping all other parameters con-
stant [40]. To estimate the relative in
uence of every
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Table 8. Comparison of the actual and predicted AgNPs sizes with GEP-1, GEP-3, and GEP-4 models.

No. Actual AgNPs size (nm) Predicted AgNPs (nm)

GEP-1 GEP-3 GEP-4

1 27.39 27.54 27.73 27.59

2 28.44 28.27 28.18 27.98

3 28.83 29.07 28.88 28.87

4 29.31 29.43 29.77 29.79

5 30.98 30.90 30.71 30.70

6 31.79 31.65 31.54 31.23

7 24.62 24.07 24.28 24.52

8 25.77 25.10 25.02 24.99

9 26.08 25.99 25.81 25.99

10 26.84 26.83 26.75 26.98

11 27.49 27.83 27.63 27.76

12 28.53 28.55 28.51 28.64

13 18.23 18.46 18.65 19.30

14 19.21 19.24 19.20 19.82

15 20.67 20.63 20.60 20.87

16 21.32 21.40 22.15 21.79

17 23.78 23.39 23.20 22.77

18 24.12 24.03 24.09 23.66

19 15.37 5.40 15.49 15.95

20 16.43 16.53 16.22 16.49

21 17.83 17.99 17.86 17.51

22 19.33 19.06 18.83 18.55

23 19.85 20.28 19.88 19.54

24 20.74 20.75 20.80 20.43

25 15.64 15.60 15.63 14.73

26 16.44 16.44 16.46 16.44

27 17.31 17.19 16.38 16.93

28 17.55 7.94 17.05 17.38

29 18.47 18.38 18.04 18.36

30 18.72 18.72 18.97 19.26

practical parameter on the AgNPs size, sensitivity
analysis of the most appropriate model, i.e., GEP-1,
was carried out (Figure 9). As shown, plant extract,
concentration of AgNO3, and stirring time had positive
e�ects on reducing the AgNPs size with plant extract
being the most e�ective parameter. Furthermore,

reaction temperature, with negligibly negative e�ect
within the investigated range, had the minimum e�ect
on the size of AgNPs.

Figure 10 illustrates the e�ects of two most
in
uential parameters (Mc and Pe) on the AgNPs
size in 3D pro�les. As shown, decreasing Pe from 1
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Figure 9. Sensitivity analysis of the practical parameters
for the green synthesis of AgNPs (plant extract (Pe),
temperature of reaction (Tr), stirring time (St), and
molar concentration of AgNPs (Mc)).

Figure 10. 3D pro�les of AgNPs changes with changes in
the most important parameters (plant extract (Pe) and
molar concentration of AgNPs (Mc)) for green synthesis
when other practical parameters (Tr (temperature of
reaction) = 40�C and St (stirring time) = 12 hr) are
constant.

to 0 caused to a severer enhancement in AgNPs size,
even at higher levels of Mc (e.g. 1.5). That is, Pe is
the major parameter in the synthesis and any increase
in Pe leads to a signi�cant decrease in the AgNPs
size.

4. Conclusion

AgNPs size is a crucial physical/chemical property that
signi�cantly a�ects the quality of products. Unique
characteristics of green synthesis as an appropriate
alternative to the conventional methods encouraged
us to estimate AgNPs size prepared through green
synthesis. In summary, this study tried to employ Gene
Expression Programming (GEP) for the estimation of
AgNPs size on the basis of experimentally collected
data. Various functions and architectures of modeling

under di�erent preparation conditions were compared
to �nd the most appropriate GEP model. The results
showed that GEP-1 had the best performance in the
prediction of particle size with RRSE, R2, and Mean
Absolute Error (MAE) equal to 0.0668, 0.9961, and
0.2545, respectively. Also, sensitivity analysis of GEP-
1 revealed that plant extract and concentration of
AgNO3 were the most e�ective parameters on the size
of AgNPs.

Nomenclature

GEP Gene Expression Programming
Pe Plant extract
Tr Temperature of reaction
St Stirring time
Mc Molar concentration of AgNPs

R2 Correlation coe�cient
MAE Mean Absolute Error
RRSE Root Relative Square Error
ET Expression Tree
h Head of gene
t Tail of gene
RIS Root Insertion Sequence transposition
IS Insertion Sequence
BCA Bivariate Correlation Analysis
PCA Principal Component Analysis
KMO Kaiser Mayer Olkin
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