Tensile creep monitoring of basalt fiber-reinforced polymer plates via electrical potential change and artificial neural network

Document Type : Article

Authors

1 International Institute for Urban Systems Engineering, Southeast University, Nanjing 210096, China, ; Department of Mechanical Engineering, College of Engineering in Alkharj, Prince Sattam Bin Abdelaziz University, Alkharj 11942, Saudi Arabia, ; Department of Mechanical Engineering, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt.

2 Department of Mechanical Engineering, California Polytechnic State University, San Luis Obispo, California, USA.

3 Department of Mechanical Engineering, College of Engineering in Alkharj, Prince Sattam Bin Abdelaziz University, Alkharj 11942, Saudi Arabia.

4 International Institute for Urban Systems Engineering, Southeast University, Nanjing 210096, China.

10.24200/sci.2020.52754.2874

Abstract

In this research, the long-term tensile creep (LTTC) failure in basalt fiber reinforced polymer (BFRP) composites under ambient conditions was detected and predicted via an expert system, in order to monitor the LTTC of BFRP laminate composites. This was accomplished by using the electrical potential change (EPC) technique that employs an electrical capacitance sensor (ECS) in conjunction with an artificial neural network (ANN). A finite element (FE) simulation model for tensile creep detection is generated by ANSYS and MATLAB. Therefore, FE analyses are employed to obtain groups of data for the training of the ANNs. The proposed method is applied to minimize the number of FE analysis for keeping the cost down and save the time of the creep behavior monitoring to a minimum. The paper first presents a study on the creep monitoring for different levels of tensile creep (%σc) as a percentage of ultimate tensile strength (UTS) equal to (25%, 50% and 75%) using EPC technique. Subsequently, the trained ANN is utilized to predict the creep behavior for the level of %σc not included in the FE data. Four different values are selected for the level of %σc; (15, 35%, 60% and 85%).

Keywords


1. Zhao, Y., Noori, M., Altabey, W.A., and Seyed, B.B. Mode shape based damage identi_cation for a reinforced concrete beam using wavelet coe_cient di_erences and multi-resolution analysis", J. Structural Control & Health Monitoring, 25(1), e2041 (2018). https://doi.org/10.1002/stc.2041 2. Zhao, Y., Noori, M., and Altabey, W.A. Damage detection for a beam under transient excitation via three di_erent algorithms", J. Structural Engineering and Mechanics, 64(6), pp. 803{817 (2017). https://doi.org/10.12989/sem.2017.64.6.803 3. Zhao, Y., Noori, M., Altabey, W.A., and Awad, T. A comparison of three di_erent methods for the identi_cation of hysterically degrading structures using BWBN model", J. Front. Built Environ, 4, 80 (2019). DOI: 10.3389/fbuil.2018.00080 4. Altabey, W.A. and Noori, M. An extensive overview of lamb wave technique for detecting fatigue damage in composite structures", J. Industrial and Systems Engineering, 2(1), pp.1{20 (2017). 5. Altabey, W.A. An exact solution for mechanical behavior of BFRP nano-thin _lms embedded in NEMS", J. Advances in Nano Research, 5(4), pp. 337{357 (2017). https://doi.org/10.12989/anr.2017.5.4.337 6. Altabey, W. A. A study on thermo-mechanical behavior of MCD through bulge test analysis", J. Advances in Computational Design, 2(2), pp. 107{119 (2017). https://doi.org/10.12989/acd.2017.2.2.107 7. John, J.L., Scott, W.C., Judy, S.R., Demetri, T., and Scott, H. Compression creep rupture of an Eglass/ vinyl ester composite subjected to combined mechanical and _re loading conditions", Thesis of Doctor of Philosophy in Engineering Mechanics, Blacksburg, Virginia (2006). 8. Kaltho_, J.F. Characterization of the dynamic failure behaviour of a glass _ber/vinylester at di_erent temperatures by means of instrumented Charpy impact testing", J. Composites: Part B, 35, pp. 657{663 (2008). 9. Chang, P.Y., Yeh, P.C., and Yang, J.M. Fatigue crack initiation in hybrid boron/glass/aluminum _ber metal laminates", J. Materials Science and Engineering: A, 496, pp. 273{280 (2008). 10. Goertzen, W.K. and Kessler, M.R. Creep behavior of carbon _ber/epoxy matrix composites", J. Materials Science and Engineering: A., 421, pp. 217{225 (2006). 11. Dal Maso, F. and Meziere, J. Calcul des propri_et_es _elastiques des tissus utilis_es dans les mat_eriaux composites", J. Oil & Gas Science and Technology, 53(6), pp. 857{870 (1998). W.A. Altabey et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 1995{2008 2005 12. Gillham, J.K., Encyclopedia of Polymer Science and Engineering, 2nd Ed., John Wiley, New York, pp. 400{ 425 (1986). 13. Barrere, C. and Dal Maso, F. R_esines _epoxy r_eticul_ees par des polyamines: structure et proprieties", J. Oil & Gas Science and Technology, 52(3), pp. 317{335 (1997). 14. ACI 440.4R-04 Prestressing Concrete Structures with FRP Tendons, American Concrete Institute, ISBN: 9780870311666 (2004). 15. Zhao, Y., Noori, M., Altabey, W.A. and Naiwei, L. Reliability evaluation of a laminate composite plate under distributed pressure using a hybrid response surface method", Int. J. Reliability, Quality and Safety Engineering, 24(3), 1750013 (2017). http:// dx.doi.org/10.1142/S0218539317500139 16. Zhao, Y., Noori, M., Altabey, W.A., Ramin, G., and Zhishen, W. A fatigue damage model for FRP composite laminate systems based on sti_ness reduction", J. Structural Durability and Health Monitoring, 13(1), pp. 85{103 (2019). http://dx.doi.org/ 10.32604/sdhm.2019.04695 17. Altabey, W.A. and Noori, M. Fatigue life prediction for carbon _bre/epoxy laminate composites under spectrum loading using two di_erent neural network architectures", Int. J. Sustainable Materials and Structural Systems (IJSMSS), 3(1), pp. 53{78 (2017). http://dx.doi.org/10.1504/IJSMSS.2017.10013394 18. Staszewski, W.J., Boller, C., and Tomlinson, G.R., Health Monitoring of Aerospace Structures: Smart Sensor Technologies and Signal Processing, Chichester (England): John Wiley and Sons Ltd. (2004). 19. Noori, M., Wang, H., Altabey, W.A. and Silik, A.I.H. A modi_ed wavelet energy rate based damage identi_cation method for steel bridges", J. Scientia Iranica, Transactions B: Mechanical Engineering, 25(6), pp. 3210{3230 (2018). https://doi.org/ 10.24200/sci.2018.20736 20. Tran, H., Noori, M., Altabey, W.A., and Wu, X. Fault diagnosis of rotating machinery using waveletbased feature extraction and support vector machine classi_er", J. High Speed Mach., 3, pp. 23{41 (2017). http://dx.doi.org/10.1515/hsm-2017-0003 21. Altabey, W.A. Free vibration of basalt Fiber Reinforced Polymer (FRP) laminated variable thickness plates with intermediate elastic support using _nite strip transition matrix (FSTM) method", J. Vibroengineering, 19(4), pp. 2873{2885 (2017). https://doi.org/10.21595/jve.2017.18154 22. Altabey, W.A. Prediction of natural frequency of basalt _ber reinforced polymer (FRP) laminated variable thickness plates with intermediate elastic support using arti_cial neural networks (ANNs) method", J. Vibroengineering, 19(5), pp. 3668{3678 (2017). https://doi.org/10.21595/jve.2017.18209 23. Altabey, W.A. High performance estimations of natural frequency of basalt FRP laminated plates with intermediate elastic support using response surfaces method", J. Vibroengineering, 20(2), pp. 1099{1107 (2018). https://doi.org/10.21595/jve.2017.18456 24. Altabey, W.A. Vibration analysis of laminated composite variable thickness plate using _nite strip transition matrix technique", In MATLAB Veri_cations MATLAB-Particular for Engineer; Kelly, B., Ed.; InTech, USA, 21, pp. 583{620 . ISBN 980-953-307- 1128-8 (2014). https://doi.org/10.5772/57384 25. Ghannadi, P., Kourehli, S.S., Noori, M., and Altabey, W.A. E_ciency of grey wolf optimization algorithm for damage detection of skeletal structures via expanded mode shapes", J. Advances in Structural Engineering, First published online, 2 June (2020). https://doi.org/10.1177/1369433220921000 26. Lee, D.C., Lee, J.J., and Yun, S.J. The mechanical characteristics of smart composite structures with embedded optical _ber sensors", J. Composite Structure, 32, pp. 39{50 (1995). 27. Seo, D.C. and Lee, J.J. E_ect of embedded optical _ber sensors on transverse crack spacing of smart composite structures", J. Composite Structure, 32, pp. 51{58 (1995). 28. Yang, W.Q., Stott, A.L., Beck, M.S., and Xie, C.G. Development of capacitance tomographic imaging systems for oil pipeline measurements", J. Review of Scienti_c Instruments, 66(8), pp. 4326{4332 (1995). 29. Yang, W.Q., Beck, M.S., and Byars, M. Electrical capacitance tomography-from design to applications", J. Measurement & Control, 28(9), pp. 261{266 (1995b). 30. Li, H. and Huang, Z. Special Measurement Technology and Application, Zhejiang University Press, Hangzhou (2000). 31. Mohamad, E.J., Rahim, R.A., Leow, P.L., Fazalul, Rahiman, M.H., Marwah, O.M.F., Nor Ayob, N.M., Rahim, H.A., and Mohd Yunus, F.R. An introduction of two di_erential excitation potentials technique in electrical capacitance tomography", J. Sensors and Actuators A., 180, pp. 1{10 (2012). 32. Zhang, W., Wang, C., Yang, W., and Wang, C. Application of electrical capacitance tomography in particulate process measurement-A review", J. Advanced Powder Technology, 25, pp. 174{188 (2014). 33. Wajman, R., Fiderek, P., Fidos, H., Jaworski, T., Nowakowski, J., Sankowski, D., and Banasiak, R. Metrological evaluation of a 3D electrical capacitance tomography measurement system for two-phase ow fraction determination", J. Measurement Science and Technology, 24, 065302 (2013). https:// doi.org/10.1088/0957-0233/24/6/065302 2006 W.A. Altabey et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 1995{2008 34. Zhao, Y., Noori, M., Altabey, W.A., and Zhishen, W. Fatigue damage identi_cation for composite pipeline systems using electrical capacitance sensors", J. Smart Material Structures, 27(8), 085023 (2018). https://doi.org/10.1088/1361-665x/aacc99 35. Zhao, Y., Noori, M., Altabey, W.A., Ghiasi, R., and Zhishen, W. Deep learning-based damage, load and support identi_cation for a composite pipeline by extracting modal macro strains from dynamic excitations", J. Applied Sciences, 8(12), 2564 (2018). https://doi.org/10.3390/app8122564 36. Altabey, W.A. and Noori, M. Detection of fatigue crack in basalt FRP laminate composite pipe using electrical potential change method", J. Physics: Conference Series, 842, 012079 (2017). https:// doi.org/10.1088/1742-6596/842/1/012079 37. Altabey, W.A. Delamination evaluation on basalt FRP composite pipe by electrical potential change", J. Advances in Aircraft and Spacecraft Science, 4(5), pp. 515{528 (2017). https://doi.org/10.12989/ aas.2017.4.5.515 38. Altabey, W.A. EPC method for delamination assessment of basalt FRP pipe: Electrodes number e_ect", J. Structural Monitoring and Maintenance, 4(1), pp. 69{ 84 (2017). https://doi.org/10.12989/smm.2017.4.1.069 39. Altabey, W.A. and Noori, M. Monitoring the water absorption in GFRE pipes via an electrical capacitance sensors", J. Advances in Aircraft and Spacecraft Science, 5(4), pp. 499{513 (2018). https://doi.org/10.12989/aas.2018.5.4.499. 40. Altabey, W.A., Noori, M., Alarjani, A., and Zhao, Y. Nano-delamination monitoring of BFRP nanopipes of electrical potential change with ANNs", J. Advances in Nano Research, 9(1), pp. 1{13 (2020). http://dx.doi.org/10.12989/anr.2020.9.1.001 41. Fasching, G.E. and Smith, N.S., High Resolution Capacitance Imaging System, US Dept. Energy, 37, DOE/METC-88/4083 (1988). 42. Fasching, G.E. and Smith, N.S. A capacitive system for 3-dimensional imaging of uidized-beds", J. Rev. Sci. Instr., 62, pp. 2243{2251 (1991). 43. Huang, S.M., Plaskowski, A.B., Xie, C.G., and Beck, M.S. Tomographic imaging of two-ow component ow using capacitance sensor", J. Phys. E: Sci. Instrum., 22, pp. 173{177 (1989). 44. Jaworski, A.J. and Bolton, G.T. The design of an electrical capacitance tomography sensor for use with media of high dielectric permittivity", J. Measurement Science and Technology, 11(6), pp. 743{757 (2000). 45. Pei, T. and Wang, W. Simulation analysis of sensitivity for electrical capacitance tomography", in Proceedings of Ninth International Conference on Electronic Measurement & Instruments (ICEMI 2009), Beijing, China (2009). 46. Altabey, W.A. E_ect of pipeline _lling material on electrical capacitance tomography", In Proceedings of the International Postgraduate Conference on Engineering (IPCE 2010), Perlis, Malaysia (2010). 47. Asencio, K., Bramer-Escamilla, W., Guti_errez, G., and S_anchez, I. Electrical capacitance sensor array to measure density pro_les of a vibrated granular bed", J. Powder Technology, 270, pp. 10{19 (2015). 48. Sardeshpande, M.V., Harinarayan, S., and Ranade, V.V. Void fraction measurement using electrical capacitance tomography and high speed photography", J. Chemical Engineering Research and Design, 9(4), pp. 1{11 (2015). 49. Mohamad, E.J., Rahim, R.A., Rahiman, M.H.F., Ameran, H.L.M., Muji, S.Z.M., and Marwah, O.M.F. Measurement and analysis of water/oil multiphase ow using electrical capacitance tomography sensor", J. Flow Measurement and Instrumentation, 47, pp. 62{70 (2016). 50. Altabey, W.A. Detecting and predicting the crude oil type inside composite pipes using ECS and ANN", J. Structural Monitoring and Maintenance, 3(4), pp. 377{393 (2016). http://dx.doi.org/10.12989/ smm.2016.3.4.377 51. Wang, B., Tan, W., Huang, Z., Ji, H., and Li, H. Image reconstruction algorithm for capacitively coupled electrical resistance tomography", J. Flow Measurement and Instrumentation, 40, pp. 216{222 (2014). https://doi.org/10.1016/j.owmeasinst.2014.07.006 52. Chandrasekera, T.C., Li, Y., Moody, D., Schnellmann, M.A., Dennis, J.S., and Holland, D.J. Measurement of bubble sizes in uidised beds using electrical capacitance tomography", J. Chemical Engineering Science, 126, pp. 679{87 (2015). https://doi.org/10.1016/j.ces.2015.01.011 53. Daoye, Y., Bin, Z., Chuanlong, X., Guanghua T., and Shimin, W. E_ect of pipeline thickness on electrical capacitance tomography", In Proceedings of the 6th International Symposium on Measurement Techniques for Multiphase Flows, J. Physics: Conference Series, 147, pp. 1{13 (2009). 54. Altabey, W.A. FE and ANN model of ECS to simulate the pipelines su_er from internal corrosion", J. Structural Monitoring and Maintenance, 3(3), pp. 297{314 (2016). http://dx.doi.org/10.12989/ smm.2016.3.3.297 55. Altabey, W.A. The thermal e_ect on electrical capacitance sensor for two-phase ow monitoring", J. Structural Monitoring and Maintenance, 3(4), pp. 335{347 (2016). http://dx.doi.org/10.12989/smm.2016.3.4.335 56. ANSYS Low-Frequency Electromagnetic analysis Guide, The Electrostatic Module in the Electromagnetic subsection of ANSYS, ANSYS, Inc. Southpointe 275 Technology Drive Canonsburg, PA 15317, Published in the USA (2015). W.A. Altabey et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 1995{2008 2007 57. Al-Tabey, W.A. Finite element analysis in mechanical design using ANSYS", Finite Element Analysis (FEA) Hand Book For Mechanical Engineers With ANSYS Tutorials, LAP Lambert Academic Publishing, Germany (2012). ISBN 978-3-8454-0479-0. 58. Altabey, W.A., Mohammad, N., and Wang, L., Using ANSYS for Finite Element Analysis: A Tutorial for Engineers, I; Momentum Press, New York, NY, USA (2018). ISBN 978-1-94708-321-9. 59. Altabey, W.A., Mohammad, N., and Wang, L., Using ANSYS for Finite Element Analysis: Dynamic, Probabilistic, Design and Heat, Transfer Analysis, II, Momentum Press: New York, NY, USA (2018). ISBN 978-1-94708-323-3. 60. Jin-Gang, F., Dong-Mei, Z., Wan-Cheng, Z., and Fa, L. Anisotropic dielectric properties of short carbon _ber composites", J. Inorganic Materials, 27(11), pp. 1223{1227 (2012). http://dx.doi.org/10.3724/ SP.J.1077.2012.12364 61. Angelidis, N., Khemiri, N., and Irving, P.E. Experimental and _nite element study of the electrical potential technique for damage detection in CFRP laminates", J. Smart Materials and Structures, 14(1), P. 147 (2004). https://doi.org/10.1088/0964- 1726/14/1/014 62. Yoshiyasu, H., Takuya, Y., and Akira, T. Throughthickness electrical conductivity of toughened CFRP laminate", J. Composites Science and Technology, 122(18), pp. 67{72 (2016). https://doi.org/10.1016/ j.compscitech.2015.11.018. 63. Kost, A., Altabey, W.A., Noori, M., and Awad, T. Applying neural networks for tire pressure monitoring systems", J. Structural Durability and Health Monitoring, 13(3), pp. 247{266 (2019). https://doi.org/10.32604/sdhm.2019.07025 64. Demuth, H. and Beale, M., Neural Network Toolbox User's Guide for use with MATLAB Version 4.0, The Math Works, Inc. (2000). 65. Skapura D., Building Neural Networks, ACM Press, Addison-Wesley Publishing Company, New York (1996). 66. Goertzen, W.K. and Kessler, M.R. Creep behavior of carbon _ber/epoxy matrix composites", J. Materials Science and Engineering A., 421, pp. 217{225 (2006). 67. Lombart, V. In-situ creep rupture _xture to characterize structural automotive polymer matrix composites", M.S. Thesis, the University of Tulsa Graduate School (2002).