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Abstract. In this research, Long-Term Tensile Creep (LTTC) failure in Basalt Fiber-
Reinforced Polymer (BFRP) composites under ambient conditions was predicted and
detected via an expert system in order to monitor the LTTC of BFRP laminated
composites. This was accomplished by using a highly accurate, easy to use, and low-
cost monitoring method incorporating an Electrical Potential Change (EPC) technique
that employs an Electrical Capacitance Sensor (ECS) in conjunction with an Arti�cial
Neural Network (ANN) to improve the process of detecting and predicting LTTC. A Finite
Element (FE) simulation model for Tensile Creep (TC) detection was generated by ANSYS
to obtain groups of data for the training of ANNs. The proposed method was then applied
to minimize the extent of FE analysis in order to reduce the time required for the monitoring
of creep behavior to a minimum. First, creep monitoring at di�erent levels of TC (%�c) as
a percentage of Ultimate Tensile Strength (UTS) equal to 25%, 50%, and 75% was studied.
Subsequently, the trained ANN was utilized to predict the creep behavior at di�erent TC
levels (%�c) of 15%, 35%, 60%, and 85%, excluded from the FE data. The results showed
excellent agreement between FE and predicted results.
© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Basalt �ber is a relatively new and viable alterna-
tive material to the more commonly used composite
�bers due to its good mechanical properties and lower
production cost. For this purpose, as a key measure
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for assessing the performance and mechanical behavior
of Basalt Fiber-Reinforced Polymers (BFRP), creep
monitoring is important. It is particularly critical to
detect long-term displacement levels and Creep Time
(CT) for these new and advanced materials [1{6].

Due to the viscoelastic nature of the polymer
matrix, the degradation of the modulus as a function
of time, characterized by creep of polymer composites,
has become a major concern for making structural
parts using a polymer composite. Over the last three
decades, considerable research has been conducted to
understand the creep behavior of polymer matrices and
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composite structures. However, these studies on com-
posite materials are very limited and inadequate [7].

According to literature, several techniques have
been employed by various researchers to evaluate the
mechanical properties of composite materials under
creep tests. As reported in nearly all of the related
published works, for tensile creep tests at maximum
load, 50% of Ultimate Tensile Strength (UTS) has
been considered. Researchers have also studied non-
linear viscoelastic models for composite materials at
di�erent levels of stress between 20 and 60 MPa in the
temperature range of up to 90�C [8,9]. According to
the �ndings of the above studies, it can be generally
concluded that composite materials exhibit non-linear
behavior at all applied levels of stress. In another
relevant study on the creep behavior of a carbon/epoxy
composite by using tensile and 
exural creep testing,
it was found that there was no creep rupture failure of
the studied composites under a loading up to 77% of
UTS for 1600 h at room temperature [10].

It is widely known that the performance and creep
behavior of laminated composites are in
uenced by
the properties of the matrix utilized in making the
composites. The creep behavior of these composites
not only maintains the desired form and protects the
reinforcements against external attacks but also has
an important role to play in the creep of composites.
As discussed in the literature, the characterization of
laminates has been studied based on the type and
architecture of reinforcements [11] and is based on the
epoxy matrix that in
uences its properties [12,13]. In
this context, the creep behavior is strongly in
uenced
by the viscoelastic properties of resin and the charac-
teristics of �bers. In the case of Glass Fiber Reinforced
Polymer (GFRP), the creep limit is 0.3UTS; in the
case of Carbon Fiber Reinforced Polymer (CFRP) and
Aramid Fiber Reinforced Polymer (AFRP), it is the
rupture limit to the creep of 0.7UTS according to the
recommendations of the American Concrete Institute
(ACI) 440.4R04 [14].

Based on this literature review and to the best of
the authors' knowledge, it is noted that no studies have
investigated BFRP composites and the corresponding
creep behavior. Therefore, this paper aims to provide
more information on the e�ect of the creep behavior
on the mechanical performance of BFRP laminated
composites.

Fiber Reinforced Polymer (FRP) damage detec-
tion is complex in general and it is a di�cult and
expensive task to conduct during an inspection due
to creep strain. The detection di�culty indicates
the importance of developing an easy and economical
technique for monitoring damage due to creep in
FRP laminated composites [15{17]. The conventional
Non-Destructive Test (NDT) methods, e.g., magnetic
particle inspection or ultrasonic inspection techniques,

are not able to detect creep damage because these
methods are not able to detect damage prior to the
formation of a creep crack in composite structures.
Moreover, (a) traditional methods of sensing, which
utilize strain gauges and vibration-based and piezo-
electric type sensors, and (b) innovative monitoring
techniques, which use advanced sensors such as optical
�bers, generally incorporate sensors inside or outside
of the structure and they are commonly expensive [18{
25].

In order to overcome these disadvantages, a num-
ber of other monitoring systems based on the intrin-
sically dielectric properties of materials have recently
been studied. The methodology presented in this
paper entails the measurement of Electrical Potential
Change (EPC) of model parts using a row of electrodes
mounted on the outer surface of structures without
utilizing additional sensors. This row of electrodes
measures the capacitance change due to the change in
dielectric permittivity. Compared to other techniques
such as traditional �ber optic sensors, the advantages
of monitoring systems based on dielectric properties
for damage detection in composite structures include
the higher reliability and lower cost. Moreover, it
is not possible to apply an intensive network of �ber
optic sensors to large composite structures. Moreover,
crack detection will fail if crack propagation does not
intersect with the sensors. Furthermore, the install-
ment of �ber optic sensors may result in initiating
damage [26,27]. Conversely, Electrical Capacitance
Sensor (ECS) o�ers more advantages such as low cost,
fast response, low sensitivity to noise, higher safety,
and continued operability under harsh environmental
conditions [28{33].

Zhao et al. [34] studied a damage identi�ca-
tion system for CFRP composite pipes using a 3D
ECS model. They subsequently derived the transfer
function of the system and applied it to an `open-
loop' pipeline model using deep learning-based damage
identi�cation by extracting modal macro strains from
dynamic excitations [35]. The proposed modulation
method extended in this paper was tested in our
previous work for crack monitoring due to fatigue
load in laminated composite pipes [36] for identifying
delamination [37,38] and detecting the mechanical
properties and strength degradation of Glass Fiber
Reinforced Epoxy (GFRE) composite pipes due to wa-
ter absorption from internal hydrostatic pressure [39].
Altabey et al. [40] monitored the nano-delamination
embedded in BFRP nano-pipes of EPC with Arti�cial
Neural Network (ANN) for the �rst time and found
that the proposed technique successfully assessed the
nano-delamination embedded in composite nano-pipes
within a low error band. In all of the previous works
using ECS electrodes, the node potential values were
measured before and after damage initiation.
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To the best of our knowledge, no paper dealing
with the electrical capacitance monitoring of FRPs
under creep conditions can be found in the open
scienti�c literature. Therefore, the aim of this work
is to investigate the Long-Term Tensile Creep (LTTC)
behavior at di�erent levels of TC (%�c) in BFRP
laminated composite plates using ECS, whose strain
and damage evolution under creep loading conditions
is monitored by measuring the capacitance change
due to the change in dielectric permittivity. In order
to overcome the drawbacks of alternative monitoring
systems, an ANN algorithm is utilized in this work to
reduce the complexity of detecting and predicting the
LTTC. First, the trained ANN is utilized to predict
the Finite Element (FE) outcome of LTTC behavior
and, then, it is subsequently used to predict the LTTC
behavior at di�erent levels of TC (%�c) excluded from
the FE data. The results show excellent agreement
between FE results and those predicted by ANN.

2. Description of the sensor

ECS was used for the �rst time in the 1980s by a
research group from the US Department of Energy to
measure 
uidized bed systems [41{43]. Subsequently,
the technique has been further developed over the last
10 years. This approach has drawn the attention of
the research community and has become signi�cantly
applicable to industrial process monitoring due to its
low cost and reliable operation under harsh environ-
ments. ECS measures the capacitance change of multi-
electrode sensors due to the change of dielectric per-
mittivity being imaged and, then, it reconstructs the
cross-section images using the measured raw data with
a suitable algorithm such as the algorithm used in this
work via ANN. Electrical capacitance system includes
a sensor and a capacitance measuring circuit, as shown

in Figures 1 and 2. ECS consists of an insulating plate,
measurement electrodes, and an earthed screen. The
measurement electrodes are mounted on the top surface
of the plate. The earthed screen is �tted between the
electrodes to cut the electro line external to the sensor
plate and reduce the inter-electrode capacitance. The
earthed screen surrounds the measurement electrodes
to shield external electromagnetic noise.

To increase the accuracy of ECS measurements,
the factors a�ecting the sensitivity of ECS and its ap-
plication domain have been studied. These studies have
included the impact of structural material and inner
dielectric permittivity [44{52] and the structural geom-
etry (thinness ratio of structures) [53,54]. Altabey [55]
studied the e�ect of environmental temperature on
ECS working �eld for the �rst time and found that
the ECS working �eld temperature caused substantial
changes in the sensitivity of the ECS electrodes as well
as its working domain.

2.1. Geometric model
Figure 1 illustrates the LTTC failure monitoring sys-
tem using the EPC with an ANN system. The model
consists of seven electrodes that are �xed on one single
side of the specimen surface, as shown in Figure 1.
The plate used for the ECS in this research included
a square plate with a length of 280 mm and a height
of 15 mm. The plate was made of BFRP composite
material with a row of seven electrodes that were
mounted on a single surface of the plate, separated
from each other by a 45 mm gap. Figure 3 illustrates
the cross-section of seven electrodes of the ECS system
con�guration. The capacitance values of each pair of
electrodes were measured via ECS, and the equivalent
of node potential from the measured capacitance values
was converted. The numbering order of electrodes
system is shown in Figure 2. In ascending order,
the electrodes were excited one by one so that if

Figure 1. Schematic representation of the monitoring method using Electrical Capacitance Sensor (ECS) and RS
methods with an Arti�cial Neural Network (ANN).
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Figure 2. Schematic representation of the measurement
principle of an Electrical Capacitance Sensor (ECS).

Figure 3. Cross-section sketch of seven electrodes
Electrical Capacitance Sensor (ECS).

one electrode was excited, other electrodes would be
recorded at ground potential as detector electrodes (see
Figure 2). The electrode capacitance, Cij , can be
calculated by using these charge measurements from
Eq. (1):

Cij =
Qij

�Vij
; (1)

where Qij is the charge induced on electrode j when
electrode i is excited with a known potential. Vij is the
potential di�erence between electrodes i and j(�Vij =
Vi � Vj).

Thus, the number of independent capacitance
measurements M = 21 using Eq. (2) is as follows:

M =
N(N � 1)

2
: (2)

2.2. FF simulation model
The structural properties of the BFRP laminated com-
posite plate are shown in Table 1. Figure 4 represents
the geometric model of the laminated composite plate
structure. These BFRP composite properties were
tested at the National and Local Joint Engineering

Figure 4. Element map of �nite element mesh.

Research Center for FRP Production and Application
Technology, Nanjing, China, a high-tech company
specializing in the research and development, manu-
facturing, marketing, and technical assessment of high-
performance �bers and composites.

Figure 4 shows that the laminated composite
square plate has a length of 280 mm with 15 mm in
height and the staking distribution to three plies is
[0=90�=0]s. The thickness of each ply is 5 mm.

2.3. ECS Governing equations
The main target of derivations is to compute the capac-
itance matrix C from sensor parameters and structure
material permittivity distribution "(x; y); therefore,
the �rst governing equation of ECS is Poisson's equa-
tion [34,36{39]:

r:"(x; y)r'(x; y) = 0: (3)

By solving Poisson equation (Eq. (3)) for the terminals
Boundary Condition (BC) of ECS measurement sys-
tem, the potential distribution inside the ECS '(x; y)
can be determined.

The other two sensor parameters include the
electric �eld vector E(x; y) and the electric 
ux density
D(x; y) calculated as follows [34,36{39]:

E(x; y) = �r'(x; y); (4)

D = "(x; y)E(x; y): (5)

Gauss's law is used to �nd changes in the electrodes
and the inter electrode capacitances. The law has been
solved based on the following surface integral [34,36{
39]:

Table 1. Structural properties of the Basalt Fiber-Reinforced Polymer (BFRP).

Element
type

�
(kg/m3)

EX
(GPa)

EY
(GPa)

EZ
(GPa)

PRXY PRYZ PRXZ GXY
(GPa)

GYZ
(GPa)

GXZ
(GPa)

PLANE121 2700 96.74 22.55 22.55 0.3 0.6 0.3 10.64 8.73 10.64
Remark: BFRP is Basalt Fiber-Reinforced Polymers, � is material density, EX, EY, EZ are elastic moduli in the X, Y , and
Z directions, respectively, GXY, GYZ, GXZ are shear moduli in the XY, YZ, and XZ planes, respectively,
PRXY, PRYZ, PRXZ are Poisson's coe�cients in the XY, YZ, and XZ planes, respectively.
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Table 2. Electrical properties.

Element
type

Permittivity
PERX

(F.m�1)
PERY

(F.m�1)
PERZ

(F.m�1)
RSVX
(
.m)

RSVY
(
.m)

RSVZ
(
.m)

SOLID123

Water 78.36 78.36 78.36 1E4 1E4 1E4
Oil 3.0 3.0 3.0 3E11 3E11 3E11
C2H5OH 24.5 24.5 24.5 7.4E6 7.4E6 7.4E6
BFRP 2.2 1.32 1.32 0.01 0.01 0.01
Electrode 1E10 1E10 1E10 1.75E-6 1.75E-6 1.75E-6
Air 1.0 1.0 1.0 3E13 3E13 3E13

Remark: Other parameters of the electrical property can be found in [60{62].

Qij =
I
Sj

("(x; y)r'(x; y):n̂)dS; (6)

where (r:) is the divergence, (r) is the gradient of
parameters, Sj is a surface enclosing electrode j; n̂ is
the unit vector normal to Sj and in�nitesimal area dS
on electrode.

2.4. The FE model description
To investigate the e�ect of TC on the dielectric
properties of the BFRP laminated panel, the FE
analysis of the electric �eld intensity of laminated panel
was designed using ANSYS ver.15 [56{59]. Suitable
FEs were selected and employed to simulate BFRP
properties, i.e., PLANE121 element is used to simulate
structural property and SOLID123 is used to simulate
electrical property. The elements were of rectangular
4-node type. Nodes and elements at each ply are 441
and 400 in number, respectively. The mesh size is 14
mm, the panel has �xed structural BCs on the one side,
the tensile load is applied to the opposite side, and the
other two sides are free. In electrical BCs, elements
at each node have one degree of freedom (voltage).
Tables 1 and 2 list all of the parameters required for
multi-physics coupled �eld analysis. Other parameters
of the electrical property can be found in [60{62].
The outcome of ANSYS software is the potential and
electric �eld values (see Eq. (4)) at the element nodes.
For each electrode, the potential BC is V0 = 15 V
(RMS) applied one by one, such that one electrode
is excited with 15 V (RMS) and other electrodes are
kept at ground (V = 0) potential. To represent the
natural propagation of electric �eld, the default BC of
continuity (n̂ � (D1 �D2) = 0) was maintained for the
internal boundaries.

3. Description of the ANN algorithm

ANNs were used and developed �rst in the 1940s as
information processing for non-linear and complex sys-
tems. Subsequently, the approach has been developed
quickly over the last two decades and the approach
has found a wide range of practical applications in

numerous �elds of engineering. One of the targets of
ANN is to �nd complex and non-linear relationships
between the input and output that cannot be found
directly from experimental or numerical data. This
is carried out by the proper training of ANN. Several
types of ANN architectures have been used in di�erent
applications with di�erent algorithms [63]. In this
study, the ANN was applied to predict the electric
potential di�erences between ECS electrode pairs.

3.1. ANN con�guration
Due to several ANN con�gurations and the e�ects of
these con�gurations on predictive accuracy and quality,
it is necessary to describe the ANN con�guration using
a simple and easy code; this study used a general ANN
con�guration algorithm as follows:

fNin[Nh1Nh2]eNoutg � �7
�
39 2

�
21
	
; (7)

where Nin and Nout are the element numbers of input
and output parameters equal to 7 and 1, respectively,
and e is the number of hidden layers equal to 2. Nh1
and Nh2 are numbers of neurons in each hidden layer
equal to 39 and 2, respectively.

Note that the e�ectiveness of ANN depends on
the related interconnections that increase based on the
number of neurons in each hidden layer. These in-
terconnections also represent the relationship between
input and output. Thus, more training datasets are
required to learn these relationships.

This study also needs to optimize the number of
neurons in each hidden layer in ANN architecture [64].

3.2. Feed-Forward Neural Networks (FFNN)
FFNN is the most commonly used ANs architecture
type. It consists of a layer of input, a layer of output,
and one or more hidden layers of neurons for full
interconnection between input and output layers [65].
The hidden and output layer neurons use nonlinear
activation functions such as linear transfer function
(purelin (n)), Tan-Sigmoid transfer function (tansig
(n)), or Radial Basis (Gaussian) transfer functions
(radbas (n)). However, no activation function is used
in the input layer since no computation is involved in



2000 W.A. Altabey et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 1995{2008

that layer, and the data 
ows between layers in a feed-
forward manner.

The training of FFNN continues until the Mean-
Square-Error (MSE) between the input data and the
network outcomes has reached a suitable value or after
the completion of a pre-speci�ed number of learning
epochs. The MSE can be computed through the
following equation:

MSE =
X�

(Ei�j)nn � Ei�j
�2=2; (8)

where (Ei�j)nn is the predicted electric potential
di�erences, Ei�j is the electric potential di�erences
measured using the FE method, and n is the number
of the FE measured data values.

4. Results and discussion

4.1. Experimental validation
The experimental dataset used in this work to validate
the proposed technique was adapted from Goertzen and
Kessler [66]. The tests were conducted on composite
laminated panels that were prepared with 2 plies
of bidirectional woven Carbon Fiber-Reinforcement
Epoxy (CFRE). Composite panels had the dimensions
of 12 in�10 in (304.8 mm � 254 mm). The composite
�ber volume fraction (Vf ) was measured to be between
35% and 40%. The thickness of the creep rupture
specimens ranged from 1.1 to 1.2 in (27.94 to 30.48
mm). TC testing was performed using an in-situ

creep rupture �xture (see Figure 5) developed by
Lombart [67] at the University of Tulsa. Goertzen and
Kessler [66] conducted the Tensile Creep Compliance
(TCC) S(t) = 1=E(t) = "(t)=�(t) for the test speci-
mens at 417 MPa (60.5 ksi) (65% UTS) and 496 MPa
(72.0 ksi) (77% UTS).

To conduct a convergence investigation of the
proposed technique, seven electrodes were �xed on
the single side of the laminated panel surface with
the same geometrical speci�cations. For the electrode
model, the thickness of electrodes was 10 mm, the space
between electrodes was 45 mm, and the BC of ECS
was (V = V0) with +15 V (V0). The EPC between
electrode pairs was measured in various cases of TC
(%�c) as the percentage of UTS and was compared with
the experimental results of Goertzen and Kessler [66].

Figure 6 shows the comparison between �nite ele-
ment data of the TCC (S(t)) and experimental data by
Goertzen and Kessler [66] for the same laminated panel
geometrical speci�cations, initial conditions, and CT.

From Figure 6, one can see excellent convergence
between the FE and experimental data of the TCC
(S(t)) with an average error of 2.2%. A small variation
between the experimental and FE data exists because
the �nite element simulations ignore the fringe-�eld
e�ects at the outer edges of the electrodes.

4.2. EPC technique for TCM
Seven electrodes were mounted on a single side of
the specimen surface. For the electrode model, the

Figure 5. In-situ creep rupture �xture [67].
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Figure 6. Comparison between Finite Element (FE) data
of the Tensil Creep Comliance (TCC) (S(t)) and
experimental data by Goertzen and Kessler [66].

Figure 7. Tensil Creep Comliance (TCC) (S(t)) of Basalt
Fiber-Reinforced Polymer (BFRP) vs. Creep Time (CT),
Tensile Creep (TC) (%�c)= 25%, 50%, and 75% Ultimate
Tensile Strength (UTS).

thickness of electrodes was 10 mm, the space between
electrodes was 45 mm, and the BC of EP was (V =
V0) with +15 V (V0). The EPCs between electrode
pairs were measured in various cases of TC (%�c)
percentage of UTS equal to (25%, 50%, and 75%).
From the measured data, TCC (S(t)) for each TC
(%�c) percentage was obtained using the scripting
capabilities in ANSYS.

Figure 7 shows the TCC, S(t) = 1=E(t) =
"(t)=�(t), for the BFRP Plate conducted at 135 MPa
(25% UTS), 270 MPa (50% UTS), and 405 MPa (75%
UTS).

According to Figure 7, it can be found that the
compliance values of 25% UTS simulation were larger
than those of 50% and 75% UTS simulation. This
di�erence between compliance values resulted from

uctuations in the modulus of the composite material
over the CT.

Figure 8. E�ect of level of Tensile Creep (TC) (%�c) on
capacitance values of electrodes (pF ).

Figure 9. E�ect of Creep Time (CT) on capacitance
values of electrodes (pF ).

The corresponding reductions in modulus over the
1000-hour period ranged from a 20% reduction over
1000 hours at 25% UTS to a 68% reduction for 1000
hours at 75% UTS.

The exponential formula (9) to �t the FE results
of TCC (S(t)) proved satisfactory by allocating appli-
cable values to the Correlation Factor (CF) that were
very close to unity. The values of four constants a, b,
k, and h at � = 25�C are shown in Table 3.

S(t) = aebt + keht: (9)

Figures 8 and 9 show the 21 capacitance measurements
(Cij) from 3D ANSYS model at di�erent levels of TC
(%�c) and CT, respectively.

As shown in Figures 8 and 9, it can be observed
that the e�ects of TC and CT on the capacitance
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Table 3. Creep compliance constants a, b, k, and h for Tensil Creep (TC) (%�c).

Tensile creep (%�c)
level

C.F a� 10�11 b� 10�7 k � 10�13 h

��15% 0.9945 3.281 {4.365 {3.965 {0.008062
�25% 0.9974 3.079 {4.082 {4.236 {0.007138
��35% 0.9947 2.554 {4.064 {4.938 {0.007641
�50% 0.9958 2.282 {3.906 {5.095 {0.008072
��60% 0.9936 2.065 {4.429 {5.465 {0.007822
�75% 0.9963 1.891 {4.733 {6.514 {0.007443
��85% 0.934 1.645 {4.779 {6.967 {0.007336
Avg. {4.3368 {0.007644
S.D 0.33831 0.000360

Remark: �FEM data, and ��FFNN expected data.

measurement (Cij) distributions are introduced and
a reduction in capacitance values between electrodes
occurs. This reduction depends on the level of TC
(%�c) and CT. Following an increase in the level of
TC (%�c) and CT, the capacitance values are reduced.

4.3. FFNN design for ECS to study the LTTC
behavior

FFNN is shown in Figure 10. The Neural Network
(NN) con�guration in this case is

�
7
�
39 2

�
21
	

, the
�rst layer has tan-sigmoid neurons, and the activation
function of the second layer is purely linear. The FFNN
is trained in order to predict TCC (S(t)) by measuring
values of %�c, CT , � in the input layer. First, the
FFNN structure was applied to training the data of
EPC at normal temperature (� = 25�C). Figure 11
shows the di�erence between the FE data and the
FFNN predicted data (TCC) at � = 25�C at levels
of TC %�c equal to 25% and 75%. According to
Figure 11 containing the NN results, the high accuracy
of prediction in this case study can be observed.
Figure 12 represents the di�erence between the FE data
and the FFNN expected data at (� = 25�C) at levels of
TC %�c equal to 50%. It is noted that FFNN results
are in agreement with the FE data.

Table 4 shows the values of MSE (see Eq. (8))
between the FE and FFNN predicted and expected
results at (� = 25�C) in order to determine the best
performance of the present network.

Figure 10. Schematic illustration of Feed-Formal Neural
Network (FFNN) design for the present study with input
data Tensil Creep (TC) (%�c), Creep Time (CT), �.

4.4. Utilizing FFNN for predicting non-FE
data

The main objective of ANN design is to predict non-
FE data. In this section, the suggested FFNN is
used to predict some non-FE data that have been

Figure 11. Comparison between the Finite Element (FE)
data and Feed-Formal Neural Network (FFNN) predicted
data at � = 25�C.
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Figure 12. Comparison between the Finit Element (FE)
data and Feed-Formal Neural Network (FFNN) Expected
data for Tensil Creep (TC) (%�c)=50% at � = 25�C.

Table 4. Mean Square Error (MSE) values.

� = 25�C
Data Level of tensile creep, %�c MSE

Predicted 25% 8.4916 e-27
75% 9.7817e-26

Expected 50% 6.5020 e-27

excluded from the previous FE evaluation. FFNN
is selected to be used for four cases where the level
of TC (%�c) equals (15%, 35%, 60%, and 85%) for
all the potential di�erences Ei�j . The previous three
parameters, i.e., %�c, CT, �, are the input vectors for
ANN, while the output is the signal vector for TCC
(S(t)). Figure 13 shows the FFNN predicted results
of the non-FE TCC (S(t)) in the BFRP laminated
composite plate. The MSE of non-FE result is 2.0210E-
26, 7.4194E-26, 3.1755E-26, and 1.7749E-25 for levels
of TC (%�c) equal to 15%, 35%, 60%, and 85%,
respectively. All of the predicted FFNN data are
plotted on the diagonal line in Figure 13. Based on
these results, FFNN provides good predictions about
non-FE data, even about the extrapolation of LTTC
behavior in the BFRP laminated composite plate.

The application of the exponential formula S(t) =
aebt+keht has proved its viability by achieving accept-
able values of the CF that are very close to unity. The
results shown in Table 3 indicate that the proposed
ANN is applied to the prediction of non-FE data.

4.5. The e�ect of TC (%�c) level percentage
The analysis of the values of four constants, i.e., a, b, k,
and h, including the variation of TC level (%�c), TCC
(S(t)), and CT, as documented in Table 3, led to the
following results:

1. At all TC levels (%�c), the tendency curve of TCC

Figure 13. Expected data of Tensil Creep Compliance
(TCC) (S(t)) at four levels of Tensil Creep (TC) (%�c)
including 15, 35%, 60%, and 85% at � = 25�C.

(S(t)) against CT at the TC level 15% has the high-
est TCC. The tendency curve at the TC level 85%
has the lowest TCC, while the values of the other
curves at the remaining TC levels range between
the above two percentages with descending orders
from 25% to 75%. Thus, it can be concluded that
the di�erence between compliance values results
from 
uctuations in the modulus of the composite
material over the CT. The corresponding reductions
in modulus over 1000 hours period ranged from a
16% reduction over 1000 hours at 15% UTS to a
78% reduction for 1000 hours at 85% UTS;

2. The values of the constants (a and k) were found to
be dependent on the TC level (%�c) for TCC (S(t)).
As the TC level increases, the absolute value of (a
and k) decreases, i.e., the TCC increases;

3. The values of the constants (b and h) at all TC
levels (%�c) are negligible and may be considered
constant. The average value (Avg.) of constants
(b and h) was calculated and considered to be used
at any TC level (%�c), as the corresponding Stan-
dard Deviation (SD) was found to have acceptable
values, as shown in Table 3.

5. Conclusions

In the present study, an Electrical Potential Change
(EPC) technique was adopted as an expert system
for monitoring the Long-Term Tensile Creep (LTTC)
behavior at di�erent levels of TC (%�c) to improve
detection e�orts in order to study the LTTC behavior.
The application of the proposed technique lowers the
cost and reduces the time duration of the Finit Element
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(FE) analysis to a minimum with higher accuracy. The
results obtained are given below:

1. Electric potential di�erence due to LTTC at dif-
ferent Tensile Creep (TC) levels (%�c) could be
measured with multiple electrodes mounted on the
outer surface of a Basalt Fiber-Reinforced Polymer
(BFRP) plate;

2. The FE results showed good convergence with Feed-
Forward Neural Network (FFNN) output results.
This veri�ed the accuracy and reliability of the
proposed method, as shown in Table 4 and Figures
11 and 12;

3. Arti�cial Neural Networks (ANNs) could be em-
ployed as a method for simulating the Electrical
Capacitance Sensor (ECS) from non-FE data of
Tensil Creep Compliance (TCC) (S(t)) at TC levels
(%�c) equal to 15%, 35%, 60%, and 85%;

4. At all TC (%�c) levels, the tendency curve of TCC
(S(t)) against CT at the TC level (15%) had the
highest TCC. The tendency curve at the TC level
(85%) had the lowest TCC, while the other curves
at the remaining TC levels fell in between 15%{
85%, with descending order from 25% to 75%.
It can be concluded that the di�erence between
compliance values results from 
uctuations in the
modulus of the composite material over the CT.
The corresponding reductions in modulus over a
1000-hour period ranged from a 16% reduction over
1000 hours at 15% UTS to a 78% reduction for 1000
hours at 85% UTS;

5. The exponential formula S(t) = aebt + keht proved
its viability for the present study. It was found that
the deviation of the constants (b and h) at di�erent
TC levels (%�c) and TCC (S(t)) was negligible,
which might be considered to be constant;

6. The values of the constants (a and k) were found to
be dependent on the TC level (%�c) and the TCC
(S(t)) with high Correlation Factor (CF). As the
TC level increased, the absolute value of (a and k)
decreased, i.e., the TCC increased;

7. Finally, it can be concluded that the proposed
approach provides a better understanding of the
LTTC behavior at di�erent TC levels (%�c).
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