Electrochemical determination of glutathione in hemolyzed erythrocytes

Document Type : Article

Authors

1 Department of Chemistry, Faculty of Science, Yazd University, Yazd, 89195-741, Iran

2 Department of Chemistry, Payame Noor University, Tehran, 19395-4697, Iran

Abstract

The physiological significance of determining glutathione (GSH) and its oxide form is obvious from their applications in clinical practices such as diagnostic experiments for diabetes, Parkinson’s disease, and cancers. Such an important detemination still needs the development of certain experimental procedures that are easy, fast, and cheap enough to implement. These procedural advantages can be provided through electrochemical methods. Therefore, in this study, at the surface of a glassy carbon electrode (GCE), a composite of functionalized multi-walled carbon nanotubes (MWCNTs) and formazon was used as a mediator to determine GSH electrochemically. The results indicated that this modified GCE is electrocatalytically very active for glutathione oxidation. Several techniques including cyclic voltammetry (CV), scanning electron microscopy (SEM), and differential pulse voltammetry (DPV) were used to characterize the electrode. Also, such kinetic parameters as the charge transfer rate constant and the transfer coefficient were calculated. In optimized conditions, there was a linear relationship between the DPV peak current of GSH oxidation and GSH concentration in the ranges of 1.0-100.0 and 100.0-800.0 µM at pH 7.0. As for the detection limit, it was found to be 0.73 µM.

Keywords


References
1. Lagman, M., Ly, J., Saing, T., Singh, M.K., Tudela,
E.V., Morris, D., Chi, P.T., Ochoa, C., Sathananthan,
A., and Venketaraman, V. Investigating the causes
for decreased levels of glutathione in individuals with
type II diabetes", PLoS One, 10(3), pp. 1{19 (2015).
2. Mazzetti, A.P., Fiorile, M.C., Primavera, A., and Lo
Bello, M. Glutathione transferases and neurodegenerative
diseases", Neurochem Int, 82, pp. 10{18 (2015).
3. Pinnen, F., Sozio, P., Cacciatore, I., Cornacchia, C.,
Mollica, A., Iannitelli, A., D^aaurizio, E., Cataldi, A.,
Zara, S., Nasuti, C., and Di Stefano, A. Ibuprofen
and glutathione conjugate as a potential therapeutic
agent for treating alzheimer's disease", Arch Pharm
(Weinheim), 344(3), pp. 139{148 (2011).
4. Vidyasagar, M.S., Kodali, M., Prakash Saxena, P.,
Upadhya, D., Murali Krishna, C., Vadhiraja, B.M.,
Fernandes, D.J., and Bola Sadashiva, S.R. Predictive
and prognostic signi cance of glutathione levels and
DNA damage in cervix cancer patients undergoing
radiotherapy", Int J Radiat Oncol Biol Phys, 78(2),
pp. 343{349 (2010).
5. Feng, J., Huang, P., Shi, S., Deng, K.Y., and Wu,
F.Y. Colorimetric detection of glutathione in cells
based on peroxidase-like activity of gold nanoclusters:
A promising powerful tool for identifying cancer cells",
Anal Chim Acta, 967, pp. 64{69 (2017).
6. Allocati, N., Masulli, M., Di Ilio, C., and Federici, L.
Glutathione transferases: Substrates, inihibitors and
pro-drugs in cancer and neurodegenerative diseases",
Oncogenesis, 7(1), pp. 1{15 (2018).
7. Kowalska, K., Zalewska, M., and Milnerowicz, H. The
application of capillary electrophoresis in the determination
of glutathione in healthy women's blood", J
Chromatogr Sci, 53(21), pp. 353{359 (2014).
8. Meister, A. Glutathione metabolism and its selective
modi cation", Journal of Biological Chemistry,
263(33), pp. 17205{17208 (1988).
9. Knapen, M.F.C.M., Zusterzeel, P.L.M., Peters,
W.H.M., and Steegers, E.A.P. Glutathione and
glutathione-related enzymes in reproduction: A reM.
Mazloum-Ardakani et al./Scientia Iranica, Transactions F: Nanotechnology 27 (2020) 3412{3420 3419
view", Eur J Obstet Gynecol Reprod Biol, 82(2), pp.
171{184 (1999).
10. Mills, B.J. and Lang, C.A. Di erential distribution
of free and bound glutathione and cyst(e)ine in human
blood", Biochem Pharmacol, 52(3), pp. 401{406
(1996).
11. Kand'ar, R., Zakova, P., Lotkova, H., Kucera, O.,
and Cervinkova, Z. Determination of reduced and
oxidized glutathione in biological samples using liquid
chromatography with
uorimetric detection", J Pharm
Biomed Anal, 43(4), pp. 1382{1387 (2007).
12. Segan, S., Opsenica, I., Zlatovic, M., Milojkovic-
Opsenica, D., and Solaja, B. Quantitative structure
retention/activity relationships of biologically relevant
4-amino-7-chloroquinoline based compounds", J Chromatogr
B Anal Technol Biomed Life Sci, 1012{1013,
pp. 144{152 (2016).
13. Ensa , A.A., Khayamian, T., and Hasanpour, F.
Determination of glutathione in hemolysed erythrocyte
by
ow injection analysis with chemiluminescence
detection", J Pharm Biomed Anal, 48(1), pp. 140{144
(2008).
14. Bergel, A., Souppe, J., and Comtat, M. Enzymatic
ampli cation for spectrophotometric and electrochemical
assays of NAD+ and NADH", Anal Biochem,
179(2), pp. 382{388 (1989).
15. Wang, Z., Han, P., Mao, X., Yin, Y., and Cao, Y.
Sensitive detection of glutathione by using DNAtemplated
copper nanoparticles as electrochemical reporters",
Sensors Actuators, B Chem, 238, pp. 325{
330 (2017).
16. Majumder, M.K., Kaushik, B.K., and Manhas, S.K.
Novel spatially arranged mixed carbon nanotube
bundle interconnects - Impact on delay and power",
Sci Iran, 20(6), pp. 2341{2347 (2013).
17. Mazloum-Ardakani, M., Dehghani-Firouzabadi, A.,
Sheikh-Mohseni, M.A., Benvidi, A., Mirjalili, B.B.F.,
and Zare, R. A self-assembled monolayer on gold
nanoparticles modi ed electrode for simultaneous determination
of isoproterenol and uric acid", Meas J Int
Meas Confed, 62, pp. 88{96 (2015).
18. Gorgin Karaji, Z., Houshmand, B., Abbasi, S., and
Faghihi, S. Electrochemical anodic oxidation process
of porous titanium granules for biomedical applications",
Sci Iran, 22(6), pp. 2745{2751 (2015).
19. Mazloum-Ardakani, M., Farbod, F., and Hosseinzadeh,
L. An electrochemical sensor based on nickel
oxides nanoparticle/ graphene composites for electrochemical
detection of epinephrine", J Nanostruct, 6(4),
pp. 293{300 (2016).
20. Mazloum-Ardakani, M., Ahmadi, S.H., Safaei Mahmoudabadi,
Z., and Khoshroo, A. Nano composite
system based on fullerene-functionalized carbon nanotubes
for simultaneous determination of levodopa and
acetaminophen", Meas J Int Meas Confed, 91, pp.
162{167 (2016).
21. Faramarzi, V., Ahmadi, V., Ghane Golmohamadi, F.,
and Fotouhi, B. A biosensor based on plasmonic wave
excitation with di ractive grating structure", Sci Iran,
24(6), pp. 3441{3447 (2017).
22. AfzaliTabar, M., Alaei, M., Ranjineh khojasteh, R.,
Motiee, F., and Rashidi, A.M. Preference of nano
porous graphene to single-walled carbon nanotube
(SWCNT) for preparing silica nano hybrid pickering
emulsion for potential chemical enhanced oil recovery
(C-EOR)", Sci Iran, 24(6), pp. 3491{3499 (2017).
23. Bagheri, Z., Ranjbar, B., Azizi, A., Lati , H., Zibaii,
M.I., and Tohidi Moghadam, T. Plasmonic circular
dichroism study of gold nanorod-quadruplex nanobioconjugates",
Sci Iran, 25(3), pp. 1783{1788 (2018).
24. Shahmiri, M.R., Bahari, A., Karimi-Maleh, H., Hosseinzadeh,
R., and Mirnia, N. Ethynylferrocene-
NiO/MWCNT nanocomposite modi ed carbon paste
electrode as a novel voltammetric sensor for simultaneous
determination of glutathione and acetaminophen",
Sensors Actuators, B Chem, 177, pp. 70{77 (2013).
25. Yuan, B., Zeng, X., Xu, C., Liu, L., Ma, Y., Zhang, D.,
and Fan, Y. Electrochemical modi cation of graphene
oxide bearing di erent types of oxygen functional
species for the electro-catalytic oxidation of reduced
glutathione", Sensors Actuators, B Chem, 184, pp.
15{20 (2013).
26. Munteanu, G., Dempsey, E., and McCormac, T.
Novel ultrasensitive and ultrafast voltammetric determination
of biological aminochromes on the copper
nanodoped mercury monolayer carbon ber electrode",
J Electroanal Chem, 650(1), pp. 105{115
(2010).
27. Wendland, T.R., Muntean, B.S., Kaur, J., Mukherjee,
J., Chen, J., Tan, X., Attygalle, D., Collins, R.W.,
Kirchho , J.R., and Tillekeratne, L.M. V. In situ self
assembly of thiolated ortho-quinone capped electrocatalysts
for bioanalytical applications", Electroanalysis,
23(10), pp. 2275{2279 (2011).
28. Calvo-Marzal, P., Chumbimuni-Torres, K.Y., Hoehr,
N.F., and Kubota, L.T. Determination of glutathione
in hemolysed erythrocyte with amperometric sensor
based on TTF-TCNQ", Clin Chim Acta, 371(1{2), pp.
152{158 (2006).
29. Ndamanisha, J.C., Bai, J., Qi, B., and Guo, L.
Application of electrochemical properties of ordered
mesoporous carbon to the determination of glutathione
and cysteine", Anal Biochem, 386(1), pp. 79{84
(2009).
30. Tang, H., Chen, J., Nie, L., Yao, S., and Kuang,
Y. Electrochemical oxidation of glutathione at wellaligned
carbon nanotube array electrode", Electrochim
Acta, 51(15), pp. 3046{3051 (2006).
31. Abiman, P., Wildgoose, G.G., and Compton, R.G.
Electroanalytical exploitation of nitroso phenyl modi
ed carbon-thiol interactions: Application to the
low voltage determination of thiols", Electroanalysis,
19(4), pp. 437{444 (2007).
3420 M. Mazloum-Ardakani et al./Scientia Iranica, Transactions F: Nanotechnology 27 (2020) 3412{3420
32. Osorio, A.G., Silveira, I.C.L., Bueno, V.L.,
and Bergmann, C.P. H2SO4/HNO3/HClfunctionalization
and its e ect on dispersion of
carbon nanotubes in aqueous media", Appl Surf Sci,
255(5, Part 1), pp. 2485{2489 (2008).
33. Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios,
J., Tasis, D., Siokou, A., Kallitsis, I., and Galiotis,
C. Chemical oxidation of multiwalled carbon nanotubes",
Carbon N Y, 46(6), pp. 833{840 (2008).
34. Nicholson, R.S. Theory and application of cyclic
voltammetry f m measurement of electrode reaction
kinetics", Anal Chem, 37(11), pp. 1351{1355 (1965).
35. Bard, A.J. and Faulkner, L.R., Electrochemical Methods:
Fundamentals and Applications, Wiley (2000).
36. Anderson, M.E. Determination of glutathione and
glutathione disulphide in biological samples", Annu
Rev Biochem, 113(1983), pp. 548{555 (1985).
37. Raoof, J.-B., Ojani, R., and Baghayeri, M. Simultaneous
electrochemical determination of glutathione and
tryptophan on a nano-TiO2/ferrocene carboxylic acid
modi ed carbon paste electrode", Sensors Actuators B
Chem, 143(1), pp. 261{269 (2009).
38. Hassanvand, Z. and Jalali, F. Electrocatalytic determination
of glutathione using transition metal hexacyanoferrates
(MHCFs) of copper and cobalt electrode
posited on graphene oxide nanosheets", Anal Bioanal
Chem Res, 5(1), pp. 115{129 (2018).
39. Lowinsohn, D., Lee, P.T., and Compton, R.G. Towards
detection of total antioxidant concentrations of
glutathione, cysteine, homocysteine and ascorbic acid
using a nanocarbon paste electrode", Int J Electrochem
Sci, 9(7), pp. 3458{3472 (2014).
40. Olmos Moya, P.M., Martnez Alfaro, M., Kazemi, R.,
Alpuche-Aviles, M.A., Griveau, S., Bedioui, F., and
Gutierrez Granados, S. Simultaneous electrochemical
speciation of oxidized and reduced glutathione. Redox
pro ling of oxidative stress in biological
uids with a
modi ed carbon electrode", Anal Chem, 89(20), pp.
10726{10733 (2017).
41. Areias, M.C.C., Shimizu, K., and Compton, R.G.
Voltammetric detection of glutathione: An adsorptive
stripping voltammetry approach", Analyst, 141(10),
pp. 2904{2910 (2016).
42. Benvidi, A., Dehghan, P., Dehghani-Firouzabadi, A.,
Emtiazi, H., Zare, H. R., and Mazloum-Ardakania, M.
Construction of a nanocomposite sensor by modi cation
of carbon paste electrode with reduced graphene
oxide and a hydroquinone derivative: Simultaneous
determination of glutathione and penicillamine", Anal
Methods, 7(1), pp. 5538{5544 (2015).
43. Yuan, B., Zhang, R., Jiao, X., Li, J., Shi, H., and
Zhang, D. Amperometric determination of reduced
glutathione with a new Co-based metal-organic coordination
polymer modi ed electrode", Electrochem
Commun, 40, pp. 92{95 (2014).
44. Tian, H., Wang, T., Fu, Y., Yu, Y., Guo, C., and Hu,
J. Electrochemical determination of glutathione using
an annealed nickel ion implanted-modi ed electrode",
J Electrochem Soc, 161(9), pp. 191{195 (2014).
45. Dong, Y., Sheng, Q., Zheng, J., and Tang, H., A
nonenzymatic reduced glutathione sensor based on
Ni-Al LDHs/MWCNTs composites", Anal Methods,
6(21), pp. 8598{8603 (2014).
46. Lee, P.T., Goncalves, L.M., and Compton, R.G. Electrochemical
determination of free and total glutathione
in human saliva samples", Sensors Actuators, B Chem,
221, pp. 962{968 (2015).
47. Liu, B., Ma, C., Li, Y., Kou, Y., Lu, J., Jiang, X.,
and Tan, L. Voltammetric determination of reduced
glutathione using poly(thionine) as a mediator in the
presence of Fenton-type reaction", Talanta, 170, pp.
399{405 (2017).