Development of micro gas actuator for analyzing gas mixture

Document Type : Research Note

Authors

1 Hubei Key Laboratory of Power System Design and Test for Electrical Vehicle, Hubei University of Arits and Science, Xiangyang 441053, China

2 Department of Chemical Engineering, School of Engineering & Applied Science, Khazar University, Baku, Azerbaijan

3 Department of Mechanical Engineering, Babol University of Technology, Babol, Iran

4 Department of Electrical Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran

Abstract

In this study, a computational technique is used to investigate the ability of a new MEMS gas actuator (MIKRA) for detection and sensation of the gas mixture. In this actuator, the temperature difference of two arms inside a rectangular domain at rarefied condition induces a Knudsen force which is relative to physical properties of the gas. Both 2d and 3D approaches are applied for the simulation of the flow inside the model. In order to define the flow feature of a low-pressure gas inside the micro gas actuator, a high order equation of Boltzmann should be solved to attain reliable results. Since the domain of this micro gas is non-equilibrium, Direct Simulation Monte Carlo (DSMC) method is applied for the simulation of the model. According to obtained results, a three-dimensional model presents more reliable results and the effect of a gap for three-dimensional model clearly demonstrates the impact of this parameter on the effective Knudsen force

Keywords


References
1. Wu, C.H.., Kang, D., Chen, P.H., and Tai, Y.C.
MEMS thermal
ow sensors", Sensors and Actuators
A: Physical, 241, pp. 135{144 (2016).
2. Li, Z., Gerdroodbary, M.B., Valipour, P., Moradi,
R., and Babazadeh, H. The optimization via
response surface method for micro hydrogen gas
actuator", International Journal of Hydrogen
Energy, 44(59), pp. 31633{31643 (2019).
https://doi.org/10.1016/j.ijhydene.2019.10.015
3. Gao, W., Zhu, L.L., and Wang, K.Y. Ranking
based ontology scheming using eigenpair computation",
Journal of Intelligent & Fuzzy Systems, 31(4),
pp. 2411{2419 (2016).
4. Gerdroodbary, M.B. Application of Knudsen force for
development of modern micro gas sensors", In Gas
Sensors. IntechOpen (2019).
5. Gao, W. and Wang, W. The eccentric connectivity
polynomial of two classes of nanotubes", Chaos, Solitons
& Fractals, 89, pp. 290{294 (2016).
6. Mahyari, A., Gerdroodbary, M.B., Mosavat, M., and
Ganji, D.D. Detection of ammonia gas by Knudsen
thermal force in micro gas sensor", Case Studies in
Thermal Engineering, 12, pp. 276{284 (2018).
7. Ketsdever, A., Gimelshein, N., Gimelshein, S., and
Selden, N. Radiometric phenomena: From the 19th
to the 21st century", Vacuum, 86(11), pp. 1644{1662
(2012).
8. Crookes, W. On attraction and repulsion resulting
from radiation", Philosophical transactions of the
Royal Society of London, 164, pp. 501{527 (1874).
9. Passian, A., Warmack, R.J., Ferrell, T.L., and Thundat,
T. Thermal transpiration at the microscale: a
Crookes cantilever", Physical Review Letters, 90, p.
124503 (2003).
10. Passian, A., Wig, A., Meriaudeau, F., Ferrell, T.L.,
and Thundat, T. Knudsen forces on microcantilevers",
Journal of Applied Physics, 92(10), pp.
6326{6333 (2002).
11. Passian, A., Warmack, R.J., Wig, A., Farahi, R.H.,
Meriaudeau, F., Ferrell, T.L., and Thundat, T. Observation
of Knudsen e ect with microcantilevers",
Ultramicroscopy, 97, pp. 401{406 (2003).
12. Lereu, A.L., Passian, A., Warmack, R.J., Ferrell, T.L.,
and Thundat, T. E ect of thermal variations on the
Knudsen forces in the transitional regime", Applied
Physics Letters, 84(6), pp. 1013{1015 (2004).
13. Aoki, K., Sone, Y., and Yano, T. Numerical analysis
of a
ow induced in a rare ed gas between noncoaxial
circular cylinders with di erent temperatures for the
entire range of the Knudsen number", Physics of Fluids
A: Fluid Dynamics, 1(2), pp. 409{419 (1989).
14. Aoki, K., Sone, Y., and Waniguchi, Y. A rare ed
gas
ow induced by a temperature eld: Numerical
analysis of the
ow between two coaxial elliptic cylinders
with di erent uniform temperatures", Computers
& Mathematics with Applications, 35(1{2), pp. 15{28
(1998).
15. Taguchi, S. and Aoki, K. Rare ed gas
ow around a
sharp edge induced by a temperature eld", Journal
of Fluid Mechanics, 694, pp. 191{224 (2012).
16. Bosworth, R.W., Ventura, A.L., Ketsdever, A.D.,
and Gimelshein, S.F. Measurement of negative thermophoretic
force", Journal of Fluid Mechanics, 805,
pp. 207{221 (2016).
17. Darbandi, M. and Sabouri, M. Detail study on
improving micro/nano gas mixer performances in slip
and transitional
ow regimes", Sensors and Actuators
B: Chemical, 218, pp. 78{88 (2015).
18. Darbandi, M. and Sabouri, M. Quantifying the direct
in
uence of di usive mass transfer in rare ed gas
mixing simulations", Journal of Fluids Engineering,
140(3), p. 031207 (2018).
19. Gimelshein, S.F. and Wysong, I. Modeling hypersonic
reacting
ows using DSMC with the Bias reaction
model", In 47th AIAA Thermophysics Conference, p.
4025 (2017).
20. Bosworth, R.W., Ventura, A.L., Ketsdever, A.D.,
and Gimelshein, S.F. Measurement of negative thermophoretic
force", Journal of Fluid Mechanics, 805,
pp. 207{221 (2016).
21. Ebrahimi, A. and Roohi, E. DSMC investigation
of rare ed gas
ow through diverging micro-and
nanochannels", Micro
uidics and Nano
uidics, 21(2),
p. 18 (2017).
22. Vo, D.D., Moradi, R., Gerdroodbary, M.B., and
Ganji, D.D. Measurement of low-pressure Knudsen
force with de
ection approximation for gas detection",
Results in Physics, 13, p. 102257 (2019).
23. Strongrich, A.D., Pikus, A.J., Sebastiao, I.B. Peroulis,
D., and Alexeenko, A.A. Low-pressure gas sensor
exploiting the Knudsen thermal force: DSMC modeling
and experimental validation", In 2016 IEEE 29th
International Conference on Micro Electro Mechanical
Systems (MEMS), pp. 828{831, IEEE (2016).
24. Strongrich, A. and Alexeenko, A. Microstructure
actuation and gas sensing by the Knudsen thermal
force", Applied Physics Letters, 107(19), p. 193508
(2015).
25. Barzegar, Gerdroodbary, M., Domiri Ganji, D., Taeibi-
Rahni, M., and Vakilipour, Sh. E ect of Knudsen
thermal force on the performance of low-pressure micro
gas sensor", The European Physical Journal, 132(7),
p. 315 (2017).
26. Barzegar Gerdroodbary, M., Ganji, D.D., Moradi, R.,
and Abdollahi, A. Application of Knudsen thermal
force for detection of CO2 in low-pressure micro gas
sensor", Fluid Dynamics, 53(6), pp. 795{806 (2018).
27. Barzegar Gerdroodbary, M., Domiri Ganji, D., Taeibi-
Rahni, M., Pruiti, B., and Moradi, R. Development
of Knudsen thermal force for mass analysis of CH4/He
gas mixture", International Journal of Modern Physics
C, 30(1), p. 1950002 (2019).
H. Wu et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 2945{2953 2951
28. Barzegar Gerdroodbary, M., Domiri Ganji, D., Taeibi-
Rahni, M., Vakilipour, Sh., and Moradi, R. Application
of direct simulation Monte Carlo for development
of micro gas actuator", Bulgarian Chemical Communications,
50(2), pp. 298{305 (2018).
29. Barzegar Gerdroodbary, M., Domiri Ganji, D., Taeibi-
Rahni, M., and Vakilipour, S. E ect of geometrical
parameters on radiometric force in low-pressure
MEMS gas actuator", Microsystem Technologies,
24(5), pp. 2189{2198 (2018).
30. Barzegar Gerdroodbary, M., Anazadehsayed, A., Hassanvand,
A., and Moradi, R. Calibration of lowpressure
MEMS gas actuator for detection of hydrogen
gas", International Journal of Hydrogen Energy,
43(11), pp. 5770{5782 (2018).
31. Barzegar Gerdroodbary, M., Mosavat, M., Domiri
Ganji, D., Taeibi-Rahni, M., and Moradi, R. Application
of molecular force for mass analysis of Krypton/
Xenon mixture in low-pressure MEMS gas actuator",
Vacuum, 150, pp. 207{215 (2018).
32. Barzegar Gerdroodbary, M., Domiri Ganji, D.,
Shiryanpour, I., and Moradi, R. Mass analysis of
CH4/SO2 gas mixture by low-pressure MEMS gas
actuator", Journal of Natural Gas Science and Engineering,
53, pp. 317{328 (2018).
33. Hassanvand, A., Barzegar Gerdroodbary, M., Moradi,
R., and Amini, Y. Application of Knudsen thermal
force for detection of inert gases", Results in Physics,
9, pp. 351{358 (2018).
34. Hariri, S., Mokhtari, M., Barzegar Gerdroodbary, M.,
and Fallah, K. Numerical investigation of the heat
transfer of a ferro
uid inside a tube in the presence of
a non-uniform magnetic eld", The European Physical
Journal Plus, 132(2), p. 65 (2017).
35. Barzegar Gerdroodbary, M., Ganji, D.D., and Amini,
Y. Numerical study of shock wave interaction on
transverse jets through multiport injector arrays in
supersonic cross
ow", Acta Astronautica, 115, pp.
422{433 (2015).
36. Barzegar Gerdroodbary, M., Amini, Y., Ganji, D.D.,
Rahimi Takam, M. The
ow feature of transverse
hydrogen jet in presence of micro air jets in supersonic

ow", Advances in Space Research, 59, pp. 1330{1340
(2017).
37. Hassanvand, A., Barzegar Gerdroodbary, M., Fallah,
K., and Moradi, R. E ect of dual micro fuel jets on
mixing performance of hydrogen in cavity
ameholder
at supersonic
ow", International Journal of Hydrogen
Energy, 43, pp. 9829{9837 (2018).
38. Moradi, R., Mahyari, A., Barzegar Gerdroodbary,
M., Abdollahi, A., and Amini, Y. Shape e ect of
cavity
ameholder on mixing zone of hydrogen jet at
supersonic
ow", International Journal of Hydrogen
Energy, 43(33), pp. 16364{16372 (2018).
39. Fallah, K., Barzegar Gerdroodbary, M., Ghaderi, A.,
and Alinejad, J. The in
uence of micro air jets on
mixing augmentation of fuel in cavity
ameholder at
supersonic
ow", Aerospace Science and Technology,
76, pp. 187{193 (2018).
40. Moradi, R., Mosavat, M., Barzegar Gerdroodbary, M.,
Abdollahi, A., and Amini, Y. The in
uence of coolant
jet direction on heat reduction on the nose cone with
aerodome at supersonic
ow", Acta Astronautica, 151,
pp. 487{493 (2018).
41. Sheikholeslami, M., Barzegar Gerdroodbary, M.,
Moradi, R., Shafee, A., and Zhixiong Li. Application
of neural network for estimation of heat transfer
treatment of Al2O3-H2O nano
uid through a channel",
Computer Methods in Applied Mechanics and
Engineering, 344, pp. 1{12 (2019).
42. Barzegar Gerdroodbary, M., Sheikholeslami, M.,
Valiallah Mousavi, S., Anazadehsayed, A., and Moradi,
R. The in
uence of non-uniform magnetic eld on
heat transfer intensi cation of ferro
uid inside a Tjunction",
Chemical Engineering and Processing: Process
Intensi cation, 123, pp. 58{66 (2018).
43. Mokhtari, M., Hariri, S., Barzegar Gerdroodbary, M.,
and Yeganeh, R. E ect of non-uniform magnetic
eld on heat transfer of swirling ferro
uid
ow inside
tube with twisted tapes", Chemical Engineering and
Processing: Process Intensi cation, 117, pp. 70{79
(2017).
44. Barzegar Gerdroodbary, M. and Moradi, R. The
in
uence of upstream wavy surface on the mixing
zone of the transverse hydrogen jet at supersonic free
stream", Aerospace Science and Technology, 94, p.
105407 (2019).
45. Mokhtari, M., Barzegar Gerdroodbary, M., Yeganeh,
R., and Fallah, K. Numerical study of mixed convection
heat transfer of various n arrangements in a horizontal
channel", Engineering Science and Technology,
an International Journal, 20(3), pp. 1106{1114 (2017).
46. Barzegar Gerdroodbary, M., Mokhtari, M., Bishehsari,
Sh., and Fallah, K. Mitigation of ammonia dispersion
with mesh barrier under various atmospheric stability
conditions", Asian Journal of Atmospheric Environment,
10(3), pp. 125{136 (2016).
47. Sheikholeslami, M., Gerdroodbary, M.B., Moradi, R.,
Shafee, A., and Li, Z. Numerical mesoscopic method
for transportation of H2O-based nano
uid through
a porous channel considering Lorentz forces", International
Journal of Modern Physics C (IJMPC) 30
(02n03), pp. 1{13 (2019).
48. Pish, F., Moradi, R., Edalatpour, A., and Barzegar
Gerdroodbary, M. The e ect of coolant injection from
the tip of spike on aerodynamic heating of nose cone
at supersonic
ow", Acta Astronautica, 154, pp. 52{60
(2019).
49. Barzegar Gerdroodbary, M. Numerical analysis
on cooling performance of counter
owing jet over
aerodisked blunt body", Shock Waves, 24(5), pp. 537{
543 (2014).
50. Barzegar Gerdroodbary, M., Ganji, D.D., and Amini,
Y. Numerical study of shock wave interaction on
2952 H. Wu et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 2945{2953
transverse jets through multiport injector arrays in
supersonic cross
ow", Acta Astronautica, 115, pp.
422{433 (2015).
51. Qin, Y. and Hiller. J.E. Understanding pavementsurface
energy balance and its implications on cool
pavement development", Energy and Buildings, 85,
pp. 389{399 (2014).
52. Gao, W., Liang, L., Xu, T.W., and Zhou, J.X.
Tight toughness condition for fractional (g,f,n)-
critical graphs", Journal of the Korean Mathematical
Society, 51(1), pp. 55{65 (2014).
53. Barzegar Gerdroodbary, M., Jahanian, O., and
Mokhtari, M. In
uence of the angle of incident
shock wave on mixing of transverse hydrogen microjets
in supersonic cross
ow", International Journal of
Hydrogen Energy, 40, pp. 9590{9601 (2015).
54. Bird, G.A. Molecular gas dynamics", NASA
STI/Recon Technical Report A.76 (1976).
55. OpenFOAM: The Open Source CFD Toolbox, User
Guide, Version 1.6 (2009).
56. Qin, Y. Pavement surface maximum temperature
increases linearly with solar absorption and reciprocal
thermal inertial", International Journal of Heat and
Mass Transfer, 97, pp. 391{399 (2016).
57. Qin, Y., Liang, J., Tan, K., and Li, F. A side by
side comparison of the cooling e ect of building blocks
with retro-re
ective and di use-re
ective walls", Solar
Energy, 133, pp. 172{179 (2016).
58. Qin, Y., Luo, J., Chen, Z., Mei, G., and Yan, L.-
E. Measuring the albedo of limited-extent targets
without the aid of known-albedo masks", Solar Energy,
171, pp. 971{976 (2018).
59. Qin, Y. A review on the development of cool pavements
to mitigate urban heat island e ect", Renewable
and Sustainable Energy Reviews, 52, pp. 445{459
(2015).
60. Qin, Y., He, Y., Hiller, J.E., and Mei, G. A new
water-retaining paver block for reducing runo and
cooling pavement", Journal of Cleaner Production,
199, pp. 948{956 (2018).
61. Gao, W., Guirao, J.L.G., and Wu, H.L. Two tight independent
set conditions for fractional (g,f,m)-deleted
graphs systems", Qualitative Theory of Dynamical
Systems, 17(1), pp. 231{243 (2018).
62. Gao, W., Farahani, M.R., and Shi, L. The forgotten
topological index of some drug structures", Acta Medica
Mediterranea, 32, pp. 579{585 (2016).
63. Gao, W., Siddiqui, M.K., Imran, M., Jamil, M.K.,
and Farahani, M.R. Forgotten topological index of
chemical structure in drugs", Saudi Pharmaceutical
Journal, 24(3), pp. 258{264 (2016).
64. Sheikholeslami, M., Gerdroodbary, M.B., Shafee,
A., Tlili, I. Hybrid nanoparticles dispersion
into water inside a porous wavy tank involving
magnetic force", Journal of Thermal Analysis
and Calorimetry, 141(5), pp. 1993{1999 (2020).
https://doi.org/10.1007/s10973-019-08858-6
65. Gao, W. and Wang. W.F. Analysis of k-partite ranking
algorithm in area under the receiver operating characteristic
curve criterion", International Journal of
Computer Mathematics, 95(8), pp. 1527{1547 (2018).
66. Gao, W. and Farahani, M.R. Generalization bounds
and uniform bounds for multi-dividing ontology algorithms
with convex ontology loss function", The
Computer Journal, 60(9), pp. 1289{1299 (2017).
67. Gao, W., Liang, L., Xu, T. W., and Gan, J.H. Topics
on data transmission problem in software de nition
network", Open Physics, 15, pp. 501{508 (2017).
68. Qin, Y., Zhang, M., and Mei, G. A new simpli ed
method for measuring the permeability characteristics
of highly porous media", Journal of Hydrology, 562,
pp. 725{732 (2018).
69. Qin, Y., Liang, J., Yang H., and Deng, Z. Gas permeability
of pervious concrete and its implications on
the application of pervious pavements", Measurement,
78, pp. 104{110 (2016).
70. Qin, Y., He, Y., Wu, B., Ma, S., and Zhang, X. Regulating
top albedo and bottom emissivity of concrete
roof tiles for reducing building heat gains", Energy and
Buildings, 156(Supplement C), pp. 218{224 (2017).
71. Qin, Y. and He, H. A new simpli ed method for
measuring the albedo of limited extent targets", Solar
Energy, 157(Supplement C), pp. 1047{1055 (2017).
72. Qin, Y., Zhang, M., and Hiller, J.E. Theoretical and
experimental studies on the daily accumulative heat
gain from cool roofs", Energy, 129, pp. 138{147 (2017).
73. Tlili, I., Moradi, R., and Gerdroodbary, M.B. Transient
nano
uid squeezing cooling process using aluminum
oxide nanoparticle", International Journal of
Modern Physics C, C30(11), 1950078 (2019).
74. Gao, W., Yan, L., and Shi, L. Generalized zagreb index
of polyomino chains and nanotubes", Optoelectronics
and Advanced Materials - Rapid Communications,
11(1{2), pp. 119{124 (2017).
75. Gao, W. and Wang, W.F. A neighborhood union
condition for fractional (k,m)-deleted graphs", Ars
Combinatoria, 113A, pp. 225{233 (2014).