Development of micro gas actuator for analyzing gas mixture

Document Type : Research Note


1 Hubei Key Laboratory of Power System Design and Test for Electrical Vehicle, Hubei University of Arits and Science, Xiangyang 441053, China

2 Department of Chemical Engineering, School of Engineering & Applied Science, Khazar University, Baku, Azerbaijan

3 Department of Mechanical Engineering, Babol University of Technology, Babol, Iran

4 Department of Electrical Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran


In this study, a computational technique is used to investigate the ability of a new MEMS gas actuator (MIKRA) for detection and sensation of the gas mixture. In this actuator, the temperature difference of two arms inside a rectangular domain at rarefied condition induces a Knudsen force which is relative to physical properties of the gas. Both 2d and 3D approaches are applied for the simulation of the flow inside the model. In order to define the flow feature of a low-pressure gas inside the micro gas actuator, a high order equation of Boltzmann should be solved to attain reliable results. Since the domain of this micro gas is non-equilibrium, Direct Simulation Monte Carlo (DSMC) method is applied for the simulation of the model. According to obtained results, a three-dimensional model presents more reliable results and the effect of a gap for three-dimensional model clearly demonstrates the impact of this parameter on the effective Knudsen force


1. Wu, C.H.., Kang, D., Chen, P.H., and Tai, Y.C.  MEMS thermal ow sensors", Sensors and Actuators  A: Physical, 241, pp. 135{144 (2016).  2. Li, Z., Gerdroodbary, M.B., Valipour, P., Moradi,  R., and Babazadeh, H. The optimization via  response surface method for micro hydrogen gas  actuator", International Journal of Hydrogen  Energy, 44(59), pp. 31633{31643 (2019).  3. Gao, W., Zhu, L.L., and Wang, K.Y. Ranking  based ontology scheming using eigenpair computation",  Journal of Intelligent & Fuzzy Systems, 31(4),  pp. 2411{2419 (2016).  4. Gerdroodbary, M.B. Application of Knudsen force for  development of modern micro gas sensors", In Gas  Sensors. IntechOpen (2019).  5. Gao, W. and Wang, W. The eccentric connectivity  polynomial of two classes of nanotubes", Chaos, Solitons  & Fractals, 89, pp. 290{294 (2016).  6. Mahyari, A., Gerdroodbary, M.B., Mosavat, M., and  Ganji, D.D. Detection of ammonia gas by Knudsen  thermal force in micro gas sensor", Case Studies in  Thermal Engineering, 12, pp. 276{284 (2018).  7. Ketsdever, A., Gimelshein, N., Gimelshein, S., and  Selden, N. Radiometric phenomena: From the 19th  to the 21st century", Vacuum, 86(11), pp. 1644{1662  (2012).  8. Crookes, W. On attraction and repulsion resulting  from radiation", Philosophical transactions of the  Royal Society of London, 164, pp. 501{527 (1874).  9. Passian, A., Warmack, R.J., Ferrell, T.L., and Thundat,  T. Thermal transpiration at the microscale: a  Crookes cantilever", Physical Review Letters, 90, p.  124503 (2003).  10. Passian, A., Wig, A., Meriaudeau, F., Ferrell, T.L.,  and Thundat, T. Knudsen forces on microcantilevers",  Journal of Applied Physics, 92(10), pp.  6326{6333 (2002).  11. Passian, A., Warmack, R.J., Wig, A., Farahi, R.H.,  Meriaudeau, F., Ferrell, T.L., and Thundat, T. Observation  of Knudsen e_ect with microcantilevers",  Ultramicroscopy, 97, pp. 401{406 (2003).  12. Lereu, A.L., Passian, A., Warmack, R.J., Ferrell, T.L.,  and Thundat, T. E_ect of thermal variations on the  Knudsen forces in the transitional regime", Applied  Physics Letters, 84(6), pp. 1013{1015 (2004).  13. Aoki, K., Sone, Y., and Yano, T. Numerical analysis  of a ow induced in a rare_ed gas between noncoaxial  circular cylinders with di_erent temperatures for the  entire range of the Knudsen number", Physics of Fluids  A: Fluid Dynamics, 1(2), pp. 409{419 (1989).  14. Aoki, K., Sone, Y., and Waniguchi, Y. A rare_ed  gas ow induced by a temperature _eld: Numerical  analysis of the ow between two coaxial elliptic cylinders  with di_erent uniform temperatures", Computers  & Mathematics with Applications, 35(1{2), pp. 15{28  (1998).  15. Taguchi, S. and Aoki, K. Rare_ed gas ow around a  sharp edge induced by a temperature _eld", Journal  of Fluid Mechanics, 694, pp. 191{224 (2012).  16. Bosworth, R.W., Ventura, A.L., Ketsdever, A.D.,  and Gimelshein, S.F. Measurement of negative thermophoretic  force", Journal of Fluid Mechanics, 805,  pp. 207{221 (2016).  17. Darbandi, M. and Sabouri, M. Detail study on  improving micro/nano gas mixer performances in slip  and transitional ow regimes", Sensors and Actuators  B: Chemical, 218, pp. 78{88 (2015).  18. Darbandi, M. and Sabouri, M. Quantifying the direct  inuence of di_usive mass transfer in rare_ed gas  mixing simulations", Journal of Fluids Engineering,  140(3), p. 031207 (2018).  19. Gimelshein, S.F. and Wysong, I. Modeling hypersonic  reacting ows using DSMC with the Bias reaction  model", In 47th AIAA Thermophysics Conference, p.  4025 (2017).  20. Bosworth, R.W., Ventura, A.L., Ketsdever, A.D.,  and Gimelshein, S.F. Measurement of negative thermophoretic  force", Journal of Fluid Mechanics, 805,  pp. 207{221 (2016).  21. Ebrahimi, A. and Roohi, E. DSMC investigation  of rare_ed gas ow through diverging micro-and  nanochannels", Microuidics and Nanouidics, 21(2),  p. 18 (2017).  22. Vo, D.D., Moradi, R., Gerdroodbary, M.B., and  Ganji, D.D. Measurement of low-pressure Knudsen  force with deection approximation for gas detection",  Results in Physics, 13, p. 102257 (2019).  23. Strongrich, A.D., Pikus, A.J., Sebastiao, I.B. Peroulis,  D., and Alexeenko, A.A. Low-pressure gas sensor  exploiting the Knudsen thermal force: DSMC modeling  and experimental validation", In 2016 IEEE 29th  International Conference on Micro Electro Mechanical  Systems (MEMS), pp. 828{831, IEEE (2016).  24. Strongrich, A. and Alexeenko, A. Microstructure  actuation and gas sensing by the Knudsen thermal  force", Applied Physics Letters, 107(19), p. 193508  (2015).  25. Barzegar, Gerdroodbary, M., Domiri Ganji, D., Taeibi-  Rahni, M., and Vakilipour, Sh. E_ect of Knudsen  thermal force on the performance of low-pressure micro  gas sensor", The European Physical Journal, 132(7),  p. 315 (2017).  26. Barzegar Gerdroodbary, M., Ganji, D.D., Moradi, R.,  and Abdollahi, A. Application of Knudsen thermal  force for detection of CO2 in low-pressure micro gas  sensor", Fluid Dynamics, 53(6), pp. 795{806 (2018).  27. Barzegar Gerdroodbary, M., Domiri Ganji, D., Taeibi-  Rahni, M., Pruiti, B., and Moradi, R. Development  of Knudsen thermal force for mass analysis of CH4/He  gas mixture", International Journal of Modern Physics  C, 30(1), p. 1950002 (2019).  H. Wu et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 2945{2953 2951  28. Barzegar Gerdroodbary, M., Domiri Ganji, D., Taeibi-  Rahni, M., Vakilipour, Sh., and Moradi, R. Application  of direct simulation Monte Carlo for development  of micro gas actuator", Bulgarian Chemical Communications,  50(2), pp. 298{305 (2018).  29. Barzegar Gerdroodbary, M., Domiri Ganji, D., Taeibi-  Rahni, M., and Vakilipour, S. E_ect of geometrical  parameters on radiometric force in low-pressure  MEMS gas actuator", Microsystem Technologies,  24(5), pp. 2189{2198 (2018).  30. Barzegar Gerdroodbary, M., Anazadehsayed, A., Hassanvand,  A., and Moradi, R. Calibration of lowpressure  MEMS gas actuator for detection of hydrogen  gas", International Journal of Hydrogen Energy,  43(11), pp. 5770{5782 (2018).  31. Barzegar Gerdroodbary, M., Mosavat, M., Domiri  Ganji, D., Taeibi-Rahni, M., and Moradi, R. Application  of molecular force for mass analysis of Krypton/  Xenon mixture in low-pressure MEMS gas actuator",  Vacuum, 150, pp. 207{215 (2018).  32. Barzegar Gerdroodbary, M., Domiri Ganji, D.,  Shiryanpour, I., and Moradi, R. Mass analysis of  CH4/SO2 gas mixture by low-pressure MEMS gas  actuator", Journal of Natural Gas Science and Engineering,  53, pp. 317{328 (2018).  33. Hassanvand, A., Barzegar Gerdroodbary, M., Moradi,  R., and Amini, Y. Application of Knudsen thermal  force for detection of inert gases", Results in Physics,  9, pp. 351{358 (2018).  34. Hariri, S., Mokhtari, M., Barzegar Gerdroodbary, M.,  and Fallah, K. Numerical investigation of the heat  transfer of a ferrouid inside a tube in the presence of  a non-uniform magnetic _eld", The European Physical  Journal Plus, 132(2), p. 65 (2017).  35. Barzegar Gerdroodbary, M., Ganji, D.D., and Amini,  Y. Numerical study of shock wave interaction on  transverse jets through multiport injector arrays in  supersonic crossow", Acta Astronautica, 115, pp.  422{433 (2015).  36. Barzegar Gerdroodbary, M., Amini, Y., Ganji, D.D.,  Rahimi Takam, M. The ow feature of transverse  hydrogen jet in presence of micro air jets in supersonic  ow", Advances in Space Research, 59, pp. 1330{1340  (2017).  37. Hassanvand, A., Barzegar Gerdroodbary, M., Fallah,  K., and Moradi, R. E_ect of dual micro fuel jets on  mixing performance of hydrogen in cavity ameholder  at supersonic ow", International Journal of Hydrogen  Energy, 43, pp. 9829{9837 (2018).  38. Moradi, R., Mahyari, A., Barzegar Gerdroodbary,  M., Abdollahi, A., and Amini, Y. Shape e_ect of  cavity ameholder on mixing zone of hydrogen jet at  supersonic ow", International Journal of Hydrogen  Energy, 43(33), pp. 16364{16372 (2018).  39. Fallah, K., Barzegar Gerdroodbary, M., Ghaderi, A.,  and Alinejad, J. The inuence of micro air jets on  mixing augmentation of fuel in cavity ameholder at  supersonic ow", Aerospace Science and Technology,  76, pp. 187{193 (2018).  40. Moradi, R., Mosavat, M., Barzegar Gerdroodbary, M.,  Abdollahi, A., and Amini, Y. The inuence of coolant  jet direction on heat reduction on the nose cone with  aerodome at supersonic ow", Acta Astronautica, 151,  pp. 487{493 (2018).  41. Sheikholeslami, M., Barzegar Gerdroodbary, M.,  Moradi, R., Shafee, A., and Zhixiong Li. Application  of neural network for estimation of heat transfer  treatment of Al2O3-H2O nanouid through a channel",  Computer Methods in Applied Mechanics and  Engineering, 344, pp. 1{12 (2019).  42. Barzegar Gerdroodbary, M., Sheikholeslami, M.,  Valiallah Mousavi, S., Anazadehsayed, A., and Moradi,  R. The inuence of non-uniform magnetic _eld on  heat transfer intensi_cation of ferrouid inside a Tjunction",  Chemical Engineering and Processing: Process  Intensi_cation, 123, pp. 58{66 (2018).  43. Mokhtari, M., Hariri, S., Barzegar Gerdroodbary, M.,  and Yeganeh, R. E_ect of non-uniform magnetic  _eld on heat transfer of swirling ferrouid ow inside  tube with twisted tapes", Chemical Engineering and  Processing: Process Intensi_cation, 117, pp. 70{79  (2017).  44. Barzegar Gerdroodbary, M. and Moradi, R. The  inuence of upstream wavy surface on the mixing  zone of the transverse hydrogen jet at supersonic free  stream", Aerospace Science and Technology, 94, p.  105407 (2019).  45. Mokhtari, M., Barzegar Gerdroodbary, M., Yeganeh,  R., and Fallah, K. Numerical study of mixed convection  heat transfer of various _n arrangements in a horizontal  channel", Engineering Science and Technology,  an International Journal, 20(3), pp. 1106{1114 (2017).  46. Barzegar Gerdroodbary, M., Mokhtari, M., Bishehsari,  Sh., and Fallah, K. Mitigation of ammonia dispersion  with mesh barrier under various atmospheric stability  conditions", Asian Journal of Atmospheric Environment,  10(3), pp. 125{136 (2016).  47. Sheikholeslami, M., Gerdroodbary, M.B., Moradi, R.,  Shafee, A., and Li, Z. Numerical mesoscopic method  for transportation of H2O-based nanouid through  a porous channel considering Lorentz forces", International  Journal of Modern Physics C (IJMPC) 30  (02n03), pp. 1{13 (2019).  48. Pish, F., Moradi, R., Edalatpour, A., and Barzegar  Gerdroodbary, M. The e_ect of coolant injection from  the tip of spike on aerodynamic heating of nose cone  at supersonic ow", Acta Astronautica, 154, pp. 52{60  (2019).  49. Barzegar Gerdroodbary, M. Numerical analysis  on cooling performance of counterowing jet over  aerodisked blunt body", Shock Waves, 24(5), pp. 537{  543 (2014).  50. Barzegar Gerdroodbary, M., Ganji, D.D., and Amini,  Y. Numerical study of shock wave interaction on  2952 H. Wu et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 2945{2953  transverse jets through multiport injector arrays in  supersonic crossow", Acta Astronautica, 115, pp.  422{433 (2015).  51. Qin, Y. and Hiller. J.E. Understanding pavementsurface  energy balance and its implications on cool  pavement development", Energy and Buildings, 85,  pp. 389{399 (2014).  52. Gao, W., Liang, L., Xu, T.W., and Zhou, J.X.  Tight toughness condition for fractional (g,f,n)-  critical graphs", Journal of the Korean Mathematical  Society, 51(1), pp. 55{65 (2014).  53. Barzegar Gerdroodbary, M., Jahanian, O., and  Mokhtari, M. Inuence of the angle of incident  shock wave on mixing of transverse hydrogen microjets  in supersonic crossow", International Journal of  Hydrogen Energy, 40, pp. 9590{9601 (2015).  54. Bird, G.A. Molecular gas dynamics", NASA  STI/Recon Technical Report A.76 (1976).  55. OpenFOAM: The Open Source CFD Toolbox, User  Guide, Version 1.6 (2009).  56. Qin, Y. Pavement surface maximum temperature  increases linearly with solar absorption and reciprocal  thermal inertial", International Journal of Heat and  Mass Transfer, 97, pp. 391{399 (2016).  57. Qin, Y., Liang, J., Tan, K., and Li, F. A side by  side comparison of the cooling e_ect of building blocks  with retro-reective and di_use-reective walls", Solar  Energy, 133, pp. 172{179 (2016).  58. Qin, Y., Luo, J., Chen, Z., Mei, G., and Yan, L.-  E. Measuring the albedo of limited-extent targets  without the aid of known-albedo masks", Solar Energy,  171, pp. 971{976 (2018).  59. Qin, Y. A review on the development of cool pavements  to mitigate urban heat island e_ect", Renewable  and Sustainable Energy Reviews, 52, pp. 445{459  (2015).  60. Qin, Y., He, Y., Hiller, J.E., and Mei, G. A new  water-retaining paver block for reducing runo_ and  cooling pavement", Journal of Cleaner Production,  199, pp. 948{956 (2018).  61. Gao, W., Guirao, J.L.G., and Wu, H.L. Two tight independent  set conditions for fractional (g,f,m)-deleted  graphs systems", Qualitative Theory of Dynamical  Systems, 17(1), pp. 231{243 (2018).  62. Gao, W., Farahani, M.R., and Shi, L. The forgotten  topological index of some drug structures", Acta Medica  Mediterranea, 32, pp. 579{585 (2016).  63. Gao, W., Siddiqui, M.K., Imran, M., Jamil, M.K.,  and Farahani, M.R. Forgotten topological index of  chemical structure in drugs", Saudi Pharmaceutical  Journal, 24(3), pp. 258{264 (2016).  64. Sheikholeslami, M., Gerdroodbary, M.B., Shafee,  A., Tlili, I. Hybrid nanoparticles dispersion  into water inside a porous wavy tank involving  magnetic force", Journal of Thermal Analysis  and Calorimetry, 141(5), pp. 1993{1999 (2020).  65. Gao, W. and Wang. W.F. Analysis of k-partite ranking  algorithm in area under the receiver operating characteristic  curve criterion", International Journal of  Computer Mathematics, 95(8), pp. 1527{1547 (2018).  66. Gao, W. and Farahani, M.R. Generalization bounds  and uniform bounds for multi-dividing ontology algorithms  with convex ontology loss function", The  Computer Journal, 60(9), pp. 1289{1299 (2017).  67. Gao, W., Liang, L., Xu, T. W., and Gan, J.H. Topics  on data transmission problem in software de_nition  network", Open Physics, 15, pp. 501{508 (2017).  68. Qin, Y., Zhang, M., and Mei, G. A new simpli_ed  method for measuring the permeability characteristics  of highly porous media", Journal of Hydrology, 562,  pp. 725{732 (2018).  69. Qin, Y., Liang, J., Yang H., and Deng, Z. Gas permeability  of pervious concrete and its implications on  the application of pervious pavements", Measurement,  78, pp. 104{110 (2016).  70. Qin, Y., He, Y., Wu, B., Ma, S., and Zhang, X. Regulating  top albedo and bottom emissivity of concrete  roof tiles for reducing building heat gains", Energy and  Buildings, 156(Supplement C), pp. 218{224 (2017).  71. Qin, Y. and He, H. A new simpli_ed method for  measuring the albedo of limited extent targets", Solar  Energy, 157(Supplement C), pp. 1047{1055 (2017).  72. Qin, Y., Zhang, M., and Hiller, J.E. Theoretical and  experimental studies on the daily accumulative heat  gain from cool roofs", Energy, 129, pp. 138{147 (2017).  73. Tlili, I., Moradi, R., and Gerdroodbary, M.B. Transient  nanouid squeezing cooling process using aluminum  oxide nanoparticle", International Journal of  Modern Physics C, C30(11), 1950078 (2019).  74. Gao, W., Yan, L., and Shi, L. Generalized zagreb index  of polyomino chains and nanotubes", Optoelectronics  and Advanced Materials - Rapid Communications,  11(1{2), pp. 119{124 (2017).  75. Gao, W. and Wang, W.F. A neighborhood union  condition for fractional (k,m)-deleted graphs", Ars  Combinatoria, 113A, pp. 225{233 (2014).