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Abstract. In this study, a computational technique is used to investigate the ability of a
new Micro Electro-Mechanical System (MEMS) gas actuator Microscale In-plane Knudsen
Radiometric Actuator (MIKRA) for detecting and sensing gas mixture. In this actuator,
the temperature di�erence of two arms in a rectangular domain in a rare�ed condition
induces a Knudsen force which is associated with physical properties of the gas. Both 2D
and 3D approaches were applied to simulating the ow inside the model. In order to de�ne
the ow feature of low-pressure gas inside the micro gas actuator, a high-order equation
of Boltzmann should be solved to attain reliable results. Since the domain of this micro
gas is non-equilibrium, Direct Simulation Monte Carlo (DSMC) method was applied to
the simulation of the model. According to obtained results, the three-dimensional model
achieved more reliable results and the existence of a gap for the three-dimensional model
clearly demonstrated the impact of this parameter on the e�ective Knudsen force.

© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Lately, the importance and application of gas actuators
to various engineering and industrial devices have
increased. Gas actuators are widely used for the
measurement and detection of dangerous gases such as
CO and Ammonia. In addition, the initial step for the
separation of the mixture is the detection of compo-
nents of the mixture. Therefore, the improvement of
this actuator could highly improve the measurement
techniques in the industrial and scienti�c applications
[1{3]. Furthermore, numerous investigators have moti-
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vated to improve a new simple method for recognizing
hazardous and harmful gas such as ammonia, carbon
oxide, and hydrogen.

Since the current gas actuator is expansive and
costly, researchers have remained motivated to �nd
new systems and methods that are cost e�ective and
e�cient. The advances of Micro-Electro-Mechanical
System (MEMS) have allowed investigators to reduce
the size of instruments on a micro scale. Therefore, mi-
croactuators are vastly industrialized because of their
solicitations for the diverse methods and applications
such as biomedical and bioengineering devices. One of
the approaches detecting gas species within mixtures is
the use of Knudsen force. Actually, the non-uniformity
of the temperature of the rare�ed gas yields a force
recognized as Knudsen force. Former researches [4,5]
exhibited that this kind of force was extremely sensitive
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to the main characteristics of the gas species. These
superior properties have encouraged the investigators
[6] to use this method for pressure evaluation.

An extraordinary number of scholarships and
works have been dedicated to determining the proper-
ties of the Knudsen force in low-pressure conditions. In
a very good review paper by Ketsdever et al. [7], com-
plete literature surveys were presented to reveal the his-
tory and origin of the Knudsen force. Furthermore, the
nature of the Knudsen force was clari�ed and analyzed
in their article. Crookes radiometer [8] is recognized as
the �rst device that applied Knudsen force, and several
scientists performed a large number of works and inves-
tigations on this device. Passian et al. [9] examined the
speci�c mechanism of thermal transpiration on a micro
scale via a Crookes cantilever. Furthermore, they [10{
16] investigated the e�ect of thermal di�erences on the
Knudsen forces in the transitional regime.

Direct Simulation Monte Carlo (DSMC) is a
conventional technique for simulating the ow within
the low-pressure domain. Darbandi and Sabouri [17,18]
studied the e�ect of di�usive mass transfer on the rar-
e�ed gas mixing simulations. Some researchers [19,20]
applied this approach to the simulation of hypersonic
ow and micro channel. Ebrahimi and Roohi [21]
focused on DSMC examination of low-pressure gas ow
through diverging micro- and nano-channels. Vo et
al. [22] employed both experimental and numerical
techniques for studying Knudsen force.

Lately, Strongrich et al. [23,24] presented a new
microsensor (Figure 1(a)) according to the mechanism
of Knudsen force. They created Microscale In-plane
Knudsen Radiometric Actuator (MIKRA) that would
work in case of temperature variations among the
two arms in the rare�ed condition. In this actuator,
the hot arm is motionless, while the cold arm may
change. Since the gap of these two arms is too small,
the Knudsen force exerts force on the cold side and
this could be measured by the capacitor. Numerical
simulations showed that there were two other types

of the mechanism, which induced force on the cold
arm. Figure 1(b) schematically presents the main
mechanisms inside the MIKRA. The description of each
type of ows will be comprehensively presented in the
next chapters.

Although numerous scholars have investigated
the radiometric force, most of research works have
focused on the vane radiometer wherein hot and cold
sides are the two sides of the vane. In fact, the
features of Knudsen thermal force are not appropriately
considered as hot and cold elements that exist in front
of each other. In our previous works [25{34], the e�ect
of Knudsen thermal force on the main characteristics
of the rare�ed MEMS actuator has been completely
investigated. However, the performance of MIKRA has
not been investigated experimentally or numerically
for gas mixtures such as helium and methane with
distinct chemical properties. In fact, the e�ects of
mass concentration of each component have not been
revealed. Therefore, the study of the ow feature
and the main mechanisms of force generation inside
the MIKRA in di�erent conditions is essential for the
development of the device. It should be mentioned
that the numerical approach is widely applied to the
simulation of industrial problems [35{53].

In the present paper, a computational technique
called DSMC is applied to the simulation of the ow
feature and evaluation of the main e�ective term on the
performance of the micro gas actuator. The primary
objective of this research is to �nd a scienti�c overview
of both two- and three-dimensional models with exper-
imental results. Meanwhile, e�ective parameters are
recognized to evaluate the main important mechanism
for the performance of this micro actuator.

2. Numerical approach

2.1. Governing equations and solver
Molecular method of the kinetic gas theory is known as
a consistent and vigorous technique for simulating the

Figure 1. (a) Microscale In-plane Knudsen Radiometric Actuator (MIKRA) device [23] and (b) schematic of ow inside
the Micro-Electro-Mechanical System (MEMS) actuator.
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model. In this study, the Boltzmann equation was cho-
sen as the governing equation. Several techniques are
available for solving the Boltzmann equation. Among
various approaches, the DSMC method of Bird [54]
is reliable and robust in low-pressure conditions and
is a vigorous technique for the molecular system. In
the present work, open-source dsmcfoam code of the
OpenFOAM was applied to take advantage of a skillful
employment of di�cult models [55]. A number of
previous researchers have applied the computational
approach to simulating engineering problems [56{62].

2.2. Numerical procedure
In order to model collision in the present study, the
Variable Hard Sphere (VHS) collision model was used.
Hence, collision pairs were selected according to the
no time counter scheme, wherein the run time corre-
sponded to the number of simulated particles [17].

In the proposed model, the size of the gap is the
speci�c characteristic length (L) of the model and it is
about 20 M. This study considered 2:48� 10+5 as the
total number of simulated particles. According to the
molecular characteristics, the time step was calculated
and 1 � 10�8 (s) was chosen for our simulations. In
this research, cell size, number of particles in each
cell, umber of time steps, number of samples, and
number of grids were 4 �m, 20, 3 � 10+6, and 9910,
respectively.

2.3. Geometry and boundary condition
Due to physic of the problem, adopting a two-
dimensional approach to simulating the current prob-
lem is a reasonable assumption. Figure 2(a) illustrates
the chosen domain along with the generated grid. As
shown in the �gure, the two-dimensional model is just
a section of the three-dimensional real model.

Figure 3. Linear temperature pro�le of the hot arm in
the 3D model.

As shown in Figure 2(a), the full border of the
domain is the supposed wall with a �xed temperature.
In our work, the performance of this micro gas sensor
was examined in a wide pressure range of 62 Pascals
to 1500 Pascals, corresponding to Knudsen numbers
of 4.64 to 0.19, respectively. Obtained results were
also validated with experimental data [23]. In order to
apply the real temperature condition of experimental
tests to the proposed model, a linear temperature
pro�le was added to the three-dimensional model.
Figure 3 clearly illustrates the temperature distribution
inside the main 3D model.

3. Results and discussion

3.1. Validation
In order to recognize and evaluate the obtained results,
exerting a net force on the cold and hot arms in case
of two temperature pro�les was investigated using the
3D model. In the main experimental examination [23],

Figure 2. (a) The boundary condition and grid of the present model and (b) comparison of the obtained results
(dsmcfoam) and experimental and numerical �ndings of Strongrich et al. [23] for N2.
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the temperature of the hot arm varied signi�cantly and
the maximum and minimum temperatures of the hot
arm were presented. In this study, the linear pro�les
of uniform and average temperatures were applied to
the hot arm. Figure 3 illustrates the temperature
distribution on the hot and cold arms upon applying a
linear temperature pro�le to the hot arm.

Figure 2(b) shows the comparative results of our
3D simulation and those of experimental examinations
for nitrogen gas. The comparison clearly shows that
both models present reasonable results with good
agreement with experimental data.

In order to evaluate the e�ect of di�erent collision
models, results of Knudsen force applied to the cold
arm with VHS were compared with those of soft-sphere
and Sutherland potentials, as shown in Table 1. Ac-
cording to the obtained results, the maximum deviation
of these models with VHS was less than 6%. Indeed,
the model of hard sphere collisions is subject to some
deviations when the temperature gradient is high in
the proposed model. Since the temperature gradient of
the proposed model is limited and less than 50 degrees,
the scheme of hard sphere collisions achieved reliable
results.

3.2. Flow pattern inside the micro actuator
Since the main particle interactions in our model
occur in-plane, the in-plane two-dimensional approach
can clearly show the major ow properties inside this
micro actuator. Figure 4 shows the ow patterns
and temperature distribution of di�erent pressure
levels. In these models, the average temperature was
applied to the hot arm and thus, temperature varied
at di�erent pressures.

In the �rst overview, the main modi�cation to
these models was temperature distribution and it con-
siderably inuenced the ow pattern. The circulation
of ow on the top of the cold arm signi�cantly shrank
as the pressure of the domain increased. Meanwhile,
the temperature gradient remained quite limited in the
vicinity of the arms. This induces numerous small
circulations in the area of the top of hot arms. Indeed,
the non-homogeneity of the particles constrains the
molecular transmission in the domain. Previously,
scholars have introduced the phenomenon of thermal
transpiration, which is the main driving mechanism
for production of force on Knudsen pumps [56{57].
Computational approaches are widely used in scienti�c
researches [58{75].

Table 1. Knudsen force on the cold arm in di�erent collision models.

Pressure (Pa) VHS Soft-sphere Sutherland
62 0.927 0.882 (+3 %) 0.927({2 %)
155 1.785 1.632(+5 %) 1.785({4 %)
387 2.332 2.079(+6 %) 2.332({5.5 %)
966 1.632 1.552(+2 %) 1.632({3 %)

Figure 4. Comparison of the ow feature and temperature distribution in the 2D model.
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Figure 5. Pressure distribution along the 3D model at
P = 62 Pa.

Figure 6. Comparison of the average temperature
di�erence on the Knudsen force along the depth of the
cold arm.

Figure 5 depicts the pressure distribution in
three cross-sections of the three-dimensional model for
domain pressure of 62 Pa. In the three-dimensional
model, the pressure gradient clearly varies as the
temperature of the hot arm changes.

3.3. E�ect of hot arm temperature
Figure 6 illustrates the e�ect of the �xed temperature
gradient on the Knudsen force in a three-dimensional
model at a pressure of 387 Pa. According to the �gure,
the rise of the average temperature of the hot arm sig-
ni�cantly increases the Knudsen force in the vicinity of
the hot heater. In fact, the major e�ect of the temper-
ature can be seen in the region where the temperature
of the hot and cold sides is considerably di�erent.

Figure 7 shows the pressure and temperature
gradient in our domain at P = 387 Pa for various
sections of the three-dimensional model.

Figure 7. Comparison of (a) Temperature and (b)
pressure along the depth of the arm at P = 387 Pa.

4. Conclusions

In this study, comprehensive three-dimensional simu-
lations were carried out to investigate the performance
of the micro actuator of Microscale In-plane Knudsen
Radiometric Actuator (MIKRA) in various conditions.
To this end, Direct Simulation Monte Carlo (DSMC)
approach was applied to simulating the rare�ed gas
within this micro sensor. This paper studied the e�ect
of signi�cant parameters such as temperature di�er-
ence, gap size, length and depth of arm, and operating
pressure on the main mechanism of the Knudsen force
production inside the rare�ed gas. Our �ndings clearly
demonstrated that the e�ect of gap size and length
of arm was greater than other parameters when the
temperature di�erence of hot and cold arm was high.
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