Enabling demand response potentials for resilient microgrid design

Document Type : Article


Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran.


The future microgrids (MGs) hosting a great deal of uncertain and intermittent local renewable generations are envisioned to need for fast and flexible units in the generation side. Demand response, however, as a load shaping tool can alleviate the needs. This paper proposes a model to consider demand response potentials activated by time-varying prices in MG design studies. The model aims at maximizing MG owner’s profit while technical limits and constraints are adhered. The model also ensures that the designed MG is resilient against islanding events. To handle complexity of the model, Benders decomposition is used to decompose the model into a master problem and two types of sub-problems. The master problem optimizes binary variables indicating installing status of generating units and batteries. The first type of sub-problems optimizes continuous variables, and the second ensures the resilient operation of the MG against islanding events. In the model, the uncertainties associated with load and intermittent generation resources are captured via a scenario-based stochastic approach. The demand behavior in response to time-varying prices is modeled via price elasticity coefficients. The effectiveness of the proposed model is demonstrated through extensive numerical studies and sensitivity analyses.


1. Critical infrastructure sectors", [Online]. Available:  https://www.dhs.gov/cisa/critical-infrastructuresectors.  2. National Academy of Sciences, Enhancing the Resilience  of the Nation's Electricity System, Washington,  DC, USA (2017).  3. Guttromson, R. and Watson, J. De_ning, measuring,  and improving resilience of electric power systems", In  Smart Grid Handbook, pp. 1-21, John Wiley & Sons,  Ltd., Hoboken, New Jersey, USA (2016).  4. Field, C.B., Barros, V., Stocker, T.F., et al., IPCC  (2012): Managing the Risks of Extreme Events and  Disasters to Advance Climate Change Adaptation,  Cambridge University Press, Cambridge, UK (2012).  5. Government O_ce of Science, Foresight Project of  Reducing Risks of Future Disasters: Priorities for Decision  Makers, Infrastructure and Resilience, London,  UK (2012).  6. Khodai, A. Guest editorial power grid resilience",  IEEE Trans. Smart Grid, 7(6), pp. 2805-2806 (2016).  7. National Intelligence Council (NIC), Global Trends,  Paradox of Progress, Washington, DC, USA (2017).  8. Governments of the United States and Canada, Joint  United States-Canada Electric Grid Security and Resilience  Strategy (2016).  9. Department of Energy, 2016-2020 Strategic Plan and  Implementing Framework, Washington, DC, USA  (2012).  10. Department of Energy, Los Alamos National Lab,  Resilient Grid Operational Strategies, New Mexico,  USA (2016).  11. Philips, J., Finster, M., and Pillon, J. State energy  resilience framework", REPORT ANL/GSS-16/4, Argonne  National Lab., Chicago, Illinois, USA (Dec.  2016).  12. Potvin, J. and Short, T. Distribution grid resiliency:  overhead structures", REPORT 3002006780, EPRI,  California, USA (2015).  13. Tripolitis, J., Martino S., and Rajagopalan, S. Distribution  grid resiliency: undergrounding", REPORT  3002006782, EPRI, California, USA (2015).  14. Department of Energy, O_ce of Energy Policy and  Systems Analysis (EPSA), Resilience of the U.S. Electricity  System: A Multi-Hazard Perspective, Washington,  DC, USA (2016).  15. Anderson, J. and Deaver, B. Distribution grid  resiliency: modern grid technology", REPORT  3002006783, EPRI, California, USA (2015).  16. Clair, J. and Shahidehpour, M. A functional microgrid  for enhancing reliability, sustainability, and energy  e_ciency", Electric J., 25(8), pp. 21-28 (2012).  17. Lasseter, R.H. Smart distribution: Coupled microgrids",  Pro. of the IEEE, 99(6), pp. 1074-1082 (2011).  18. Shahidehpour, M. Role of smart microgrid in a perfect  power system", 2010 IEEE Power and Energy Society  General Meeting (2010).  19. Strbac, G., Hatziargyriou, N., Lopes, J.P., et al.  Microgrids", IEEE Power and Energy Mag., 13(4),  pp. 35-43 (2015).  20. Aguero, J.R., Bahramirad, S., and Khodaei, A. Building  resilient integrated grids", Electri_cation Mag.,  3(1), pp. 48-55 (2015).  21. Bahramirad, S., Reder, W., and Khodaei, A.  Reliability-constrained optimal sizing of energy storages",  IEEE Trans. Smart Grid, 3(4), pp. 2056-2062  (2012).  22. Alsaidan, I., Khodaei, A., and Gao, W. A comprehensive  battery energy storage optimal sizing model  for microgrid applications", IEEE Trans. Power Syst.,  33(4), pp. 3968-3980 (2018).  M. Chegnizadeh and A. Safdarian/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 3681{3693 3693  23. Yuancheng, M. Reliability and economy evaluation  of microgrid based distribution network connection  mode", 4th International Conf. on Electric Utility  Deregulation and Restructuring and Power Technologies  (DRPT), Shandong, China (2011).  24. Madathil, S.C., Yamangil, E., Nagarajan, H., et al.  Resilient o_-grid microgrids: Capacity planning and  N-1 security", IEEE Trans. Smart Grid, 9(6), pp.  6511-6521 (2018).  25. Billinton, R. Maintaining supply reliability of small  isolated power system using renewable energy", IEEE  Proc. Generation, Transmission and Distribution,  148(6), pp. 530-534 (2001).  26. Are_far, S.A. Optimum microgrid design for enhancing  reliability and supply-security", IEEE Trans.  Smart Grid, 4(3), pp. 1567-1575 (2013).  27. Shahidehpour, M. and Khodaei, A. Microgrid planning  under uncertainty", IEEE Trans. Power Syst.,  30(5), pp. 2417-2425 (2013).  28. Ranjbar, H. and Safdarian, A. A robust model for  daily operation of grid-connected microgrids during  normal conditions", Sciantia Iranica J. (In Press).  DOI:10.24200/sci.2019.50690.1819  29. Zhang, J. and Zeng, B. Integrated planning for transition  to low-carbon distribution system with renewable  energy generation and demand response", IEEE Trans.  Smart Grid, 29(3), pp. 1153-1165 (2014).  30. Yang, X. Microgrid's generation expansion planning  considering carbon economy", 2012 Asia-Paci_c  Power and Energy Engineering Conf., Shanghai, China  (2012).  31. Shahidehpour, M. and Khodaei, A. Microgrid-based  co-optimization of generation and transmission planning  in power systems", IEEE Trans. Power Syst.,  28(2), pp. 1582-1590 (2013).  32. Cheng, B. and Wang, Z. Robust optimization based  optimal DG placement in microgrids", IEEE Trans.  Smart Grid, 5(5), pp. 2173-2182 (2014).  33. Khodaei, A. Resiliency-oriented microgrid optimal  scheduling", IEEE Trans. Smart Grid, 5(4), pp. 1584-  1591 (2014).  34. Khodaei, A. Provisional microgrid planning", IEEE  Trans. Smart Grid, 8(3), pp. 1584-1591 (2017).  35. Atia, R. and Yamada, N. Sizing and analysis of  renewable energy and battery systems in residential  microgrids", IEEE Trans. Smart Grid, 7(3), pp. 1204-  1213 (2016).  36. Wu, T., Yang, Q., Bao, X., et al. Coordinated energy  dispatching in microgrid with wind power generation  and plug-in electric vehicles", IEEE Trans. Smart  Grid, 14(1), pp. 47-57 (2013).  37. Zhang, C., Xu, Y., Dong, Z.Y., et al. Robust coordination  of distributed generation and price-based  demand response in microgrids", IEEE Trans. Smart  Grid, 5(4), pp. 1608-1620 (2017).  38. Ahmad Bashir, A., Pourakbari-Kasmaei, M., Contreras,  J., et al. A novel energy scheduling framework  for reliable and economic operation of islanded and  grid-connected microgrids", Electric Power Systems  Research J., 171, pp. 85-96 (2019).  39. Safdarian, A. Integration of price-based demand response  in Discos' short-term decision model", IEEE  Trans. Smart Grid, 5(5), pp. 2235-2245 (2014).