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Abstract. The future microgrids (MGs) hosting a multitude of uncertain and intermittent
local renewable generation resources are anticipated needing fast and 
exible units on the
generation side. However, demand response, as a load shaping tool, can alleviate this need.
This paper proposes a model to consider demand response potential incorporated by time-
varying prices in MG design studies. The model aims at maximizing pro�t of the MG owner
while technical limits and constraints are adhered to. It also ensures that the designed MG
is resilient to islanding events. To handle complexity of the model, Benders decomposition
was used to decompose it into a master problem and two types of sub-problems. The
master problem optimized binary variables indicating installing status of generating units
and batteries. The �rst type of sub-problems optimized continuous variables and the second
ensured the resilient operation of the MG against islanding events. In the model, the
uncertainties associated with load and intermittent generation resources were captured via
a scenario-based stochastic approach. Demand behavior in response to time-varying prices
was modeled via price elasticity coe�cients. Also, e�ectiveness of the proposed model was
investigated through extensive numerical studies and sensitivity analyses.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Capacity de�cit in electric power systems may lead to
the failure of almost every critical infrastructure such as
food, energy, water, ICT, transport, health, emergency
services, government, and �nance, to name a few [1].
This is in line with the statement of the National
Academy of Sciences of the United States mentioning
that the modern world runs on electricity [2]. This
pivotal role of electric power systems re
ects the
necessity for approaches to protecting electric power
systems against habitual and occasional events and
threats, especially on the evidence of the recent increase
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in manmade and natural disasters [3,4]. However,
these events occur more frequently as a consequence
of climate changing and they are remote from daily
experiences with surprising characteristics in areal ex-
tent, severity, and time. Needless to mention, such new
alien and out of ordinary challenges [2-6] may impose
new risks to electric power systems [7]. The risks are
imposed mainly because of the low probability and
predictability of the events [7]. These characteristics
scrap the traditional, clich�ed risk-based approaches
intended for ensuring that electric power systems are
safely operated. With this in mind, engineers were
prompted to develop a new resiliency paradigm [7]
based on the idea that, although stress could not
be clearly anticipated, the associated risks would be
reduced by preventive and adaptive goals [8]. This
approach, in both technical and institutional respects,
was expanded upon the spectrum of events and threats
originating from natural disasters, accidents, and de-
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liberate attacks. Nowadays, resiliency is present in
the strategic goals of the United States and Canada
joint security strategy [8], the strategic plan of the
United States Department of Energy [9], and some
other technical plans.

To enhance resiliency of the power system, the
approaches to dealing with di�erent types of threats are
classi�ed into two categories of operation-oriented [10]
and hardening-oriented [11]. Some of the approaches
only touch reinforcement of elements against a speci�c
type of threat [12,13] while others revolve around
solutions that can be implemented independent of the
threat [14], one of which is using microgrids (MGs) [15].

MG was initially introduced to facilitate prolif-
eration of local generation, including renewable and
conventional resources, o�ering diverse bene�ts by
meeting local controllable demands in an e�cient,
reliable, resilient, and environmentally friendly man-
ner [16,17]. The conspicuous feature of an MG, called
islanding, is its ability to cope with the risky situations
where support from the upstream power system is
unavailable [18-20].

In order to design an MG, di�erent objectives
such as cost minimization, reliability improvement,
and environmental concern alleviation can be pursued.
Bahramirad et al. [21] proposed a model for sizing the
storage while trying to maintain the trade-o� between
reliability and cost. A model for MG expansion
to optimally size the storages with respect to some
practical factors was proposed by Alsaidan et al. [22]. It
is worthwhile to note that reliability is a very important
issue for MGs hosting high penetrations of intermit-
tent and uncertain renewable energy resources [23].
Madathil et al. [24] addressed the N-1 reliability of
capacity planning and operations for remote small
MGs. Billinton [25] presented a discussion of the
impact of renewable energy resources on reliability of
the islanded electric power systems. In [26], a model
has been proposed to identify the optimum structure of
MGs by siting switches in an electric power distribution
network. Shahidehpour and Khodaei [27] presented
a model to design an MG by considering the impact
of uncertainties associated with renewable energy re-
sources, load, market prices, and islanding. To consider
these uncertainties, they optimized the worst-case sit-
uation via Benders decomposition technique. In [28],
a bi-level robust optimization model is developed in
order to optimize participation of MGs in the markets
as well as operation of energy resources. To consider
uncertainties, a genetic algorithm has been used in this
study. In [29] and [30], the focus is on planning MGs
with environmental objectives considering incentives
and penalties for greenhouse gas emissions.

In [31], a model is presented to design transmis-
sion network and MGs, simultaneously, in order to
minimize the costs. The study also minimizes load

curtailment in the case of faults. Cheng and Wang [32]
tried to maximize pro�t of the MG owner as the
purpose of their design problem. In order to ensure
reliability of the designed MG, they considered a lower
bound of the percentage of load supplied via local
power generation.

In [33], resilient operation of MGs is studied
and an MG is called resilient if its hosting load is
served during unexpected islanding events. In order
to ensure resiliency of an MG, backup generation
units are proposed to be installed to compensate for
the intermittent nature of renewable energy resources.
Needless to mention, MG owners are not in favour of
the installation of the backup units, which signi�cantly
increases the costs. To resolve this issue, Khodaei [34]
investigated a provisional MG concept by which a few
MGs could be operated in connected mode to support
each other during islanding events.

Controllable loads play an indispensable role in
addressing the coordination between supply and de-
mand in MG, where decision making is intertwined
with uncertainties associated with forecasting. In this
regard, Atia and Yamada [35] incorporated several con-
trollable loads of the residential MG into sizing of the
renewable and energy storage problem. Wu et al. [36]
focused on a two-stage robust MG coordination strat-
egy. They scheduled a day-ahead price-based Demand
Response (DR) program assuming that micro-turbine
outputs were modi�ed on an hourly basis. In [37], a
mathematical operational DR model for isolated MG
has been o�ered in which any household owns an
intelligent Energy Hub Management System (EHMS)
to minimize its costs, while the objective function of the
MG operator is overall cost. Ahmad Bashir et al. [38]
proposed a novel energy management framework to
minimize the total MG cost. For preserving comfort
priorities of individual households by a smart central
management system, they combined proactive and
reactive approaches in order to e�ciently address the
uncertainties associated with generation and demand
in the interconnected operation and random outages of
MG components.

The review of studies above emphasizes that MG
is a structure with great bene�ts for all stakeholders in
many ways. However, under the islanding mode, host-
ing a great number of intermittent resources may result
in challenging balancing issues [34], which necessitates
expensive back-up generators.

In the literature, there is no signi�cant research
focusing on methods to avoid the expensive solution
of backup generation units. To �ll this gap, this
paper proposes using demand response potentials to
relieve the need for such expensive facilities, especially
during island operation mode. This also enhances MG
resiliency since critical loads hosted by the MG can
be served while the upstream grid is unavailable due
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to manmade or natural disasters. For this purpose,
a mathematical model is developed in this paper in
which demand response is integrated into MG design
process. To avoid computational complexities, the
model is decomposed into a master problem and two
types of sub-problems via Benders decomposition ap-
proach. The master problem makes decisions on binary
variables, while the �rst type of sub-problems optimizes
continuous variables and the second type investigates
whether MG resilience is maintained within island
operation mode. The performance of the model is
veri�ed through extensive numerical studies and several
sensitivity analyses.

The rest of this paper is organized as follows.
Section 2 presents the concept of the model and key
assumptions made. Section 3 provides mathematical
formulation of the model. Section 4 presents numerical
studies and discussions. Finally, relevant conclusions
are drawn in Section 5.

2. Methodology outline

2.1. Overview
The model for incorporating demand response po-
tentials enabled via dynamic prices in MG planning
studies is demonstrated in Figure 1. It aims at
maximizing pro�t of the MG owner while the operating
point is able to ensure that the MG is resilient to the
islanding event. The problem contains binary decision
variables associated with installation. Moreover, the

response of consumers to dynamic prices makes the
problem nonlinear. Therefore, the problem in hand is
a mixed-integer non-linear one clearly hard to solve.
To cover non-linearity of the problem and ensure
a�ordability of the solution to its computational com-
plexity, Benders decomposition method is employed to
decompose the problem into a master problem and two
types of sub-problems. In the master problem, the
investment binary decision variables are determined.
The number of sub-problems in the �rst set is equal
to the total number of time intervals. The investment
plan decided in the master problem is employed for
the time interval sub-problems, called operation sub-
problems hereinafter, to �nd the optimal schedule for
the operational variables during the time interval. The
sub-problems of the second type, called resiliency sub-
problems hereinafter, check the safe operation of the
MG during islanding event. The decision variables are
mentioned below:

� Investment variable decisions include the invest-
ment states of dispatchable and non-dispatchable
distributed generation as well as energy storage
units. These decisions are modelled via binary
variables, which are optimized by minimizing the
total investment cost. Note that the binary variables
are set to one for installation, zero otherwise. In
addition, it is worthwhile to mention that genera-
tion and storage units are chosen from the set of
introduced candidates;

Figure 1. Diagram of the proposed MG decision making model.
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� Operation variable decisions comprise the active
power output of dispatchable units, the amount of
charge/discharge power of storage units, the amount
of load, and power transaction between the MG and
the upstream grid. It is clear that these decisions
are made in line with the maximization of the pro�t
of the MG owner.

In the model, the uncertainty associated with load
and intermittent generation resources is considered via
a scenario-based stochastic approach. The demand
behaviour in response to price changes is captured via
price elasticity coe�cients.

Figure 2 depicts the 
owchart of the proposed MG
planning model. As can be seen, the problem is solved
via an iterative approach by which the master problem
and sub-problems are solved sequentially. The solution
to the master problem is fed to the sub-problems
and the results achieved by solving the sub-problems
are used to revise the master problem. The solution
convergence is examined based on the closeness of
a calculated investment cost in the master problem
and the pro�t that is calculated in the operation sub-
problems. The iterative process continues until the
convergence criterion is met. Finally, the investment
and operation variables are assessed in the resiliency

Figure 2. Flowchart of the proposed MG planning model.

sub-problem to ensure generation adequacy for the
islanding event. If the generation is not adequate, the
master problem is revised so as to ensure the necessary
condition for the islanding event.

2.2. Assumptions
The principal assumptions of the proposed model are
mentioned as follows.

� The MG operator is the owner of all installed assets
and facilities. Synonymously, the MG owner and
operator are the same in this study;

� Ramp limitations and costs are not considered for
dispatchable units in this study. This makes sense
because of the small size and rapid responding
capability of such units;

� Dynamic prices are employed to coordinate supplies
and demands. The demand behaviour in response
to price changes is captured via price self- and cross-
elasticity coe�cients, which are considered to be
constant parameters in the planning horizon;

� Since the MG operator and the owner are the same,
the generation side of the MG is not an open
market. Hence, it introduces regulatory constraints
on hourly prices and yearly income to preserve
fairness;

� Costs of system maintenance and smart meter in-
stallations are ignored. In other words, it is as-
sumed that the metering infrastructures are already
installed in the system;

� No salvage value is considered since useful life of
facilities is supposed to be similar to the planning
horizon;

� As local generation is close to consumption, network
congestion is ignored and the system is supposed to
be a balanced three-phase system. These simpli�ca-
tions are to underline the major contribution of this
paper;

� The Point of Common Coupling (PCC), which
connects the MG to the main grid, is assumed to
have enough capacity to supply the MG load during
the entire planning horizon;

� In order to ensure the possibility of the contribution
of energy storages in the islanded mode, it is
assumed that MG operator keeps the energy stored
in batteries at the scheduled plan. This assumption
is for avoiding the e�ect of uncertainties associated
with renewable resources on the energy stored in
batteries.

3. Mathematical formulation

In this section, mathematical formulation of the pro-
posed original model is �rst presented. Then, the
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solving procedure is elaborated on, through which
the original problem is decomposed into the master
problem and operation and resiliency sub-problems.

3.1. Original model
As mentioned earlier, the objective of the model is to
maximize total pro�t of the MG owner through the
planning horizon as follows:

MAX R� cos t: (1)

In Relation (1), the pro�t is represented as the
revenue item minus costs. Revenue is the outcome
of selling energy to consumers while the cost function
consists of annual capital costs, operation costs, and
costs of the unserved energy. The maximum pro�t
is evaluated in terms of discounted values by the
incorporation of the present-worth costs or revenue
components. Revenue and cost are formulated as
follows:

cos t =
X
y
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�ai = P flati � ei;i
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�flat
;

i 2 H; j 2 H; i 6= j; (12)

�i = P flati (1� X
h02H

ei;h0); i 2 H: (13)

The operation cost presented in Eq. (2) is composed
of cost of the selected non-renewable generation and
the costs of power imports from the main grid. The
revenue is calculated through multiplying selling price
by the demand of costumers during time (Eq. (3)).
Because the demand and price are interdependent, em-
ploying demand response program makes these items
intertwined. As a result, changing price leads to
demand shift from/to the relevant hour. This makes
the model nonlinear. In this regard, the demand and
price formulations are extended, and nonlinear items in
the revenue formula are detected and linearized. The
extended form of the demand is given in Eqs. (4) and
(5). The demand at time interval h is computed by the
elasticity matrix. The elasticity matrix includes self
and cross elasticity coe�cients that represent capabil-
ity of the demand to shift from/to other time intervals
based on price changes. This matrix is applied to the
initial demand in Eq. (4) and in detail in Eq. (5).
Substituting Eq. (5) in Eq. (3), the revenue can be
achieved by Eqs. (6) and (7). In addition, total revenue,
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represented in Eq. (8) and summarized in a compact
form in Eq. (9), can be formulated as follows by using
the auxiliary parameters de�ned in Eqs. (10)-(13):

RT =

8>><>>:Xh2H X
h02H8h0 6=h

�ah;h0 � �h � �h0
9>>=>>;

+

(X
h2H
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)
+

(X
h2H

�ah � �2
h

)
: (14)

Needless to mention, coping with the nonlinearity
of the �rst and third items of Eq. (14) plays a crucial
role in the computational feasibility. As a result, the
technique proposed in [39] is applied to the �rst term
in Eq. (14) as follows:

�ai;j � �i � �j =
�ai;j

2
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i��2
j
	
: (15)

The linearization is followed by de�ning �h as follows
and sorting revenue expression in Eq. (17):
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)
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The square items in the �rst and last terms of
Eq. (17) are still non-linear. Therefore, piecewise linear
approximation of these terms, as in [39], is used as
follows:

�h�2
h = �h;1�h;1 + �h;2�h;2 + �h;3�h;3 + �h;4�h;4;

h 2 H; (18)

�h = �h;1 + �h;2 + �h;3 + �h;4; (19)

�h;l = 2� �h�h; (20)

�ah;h0
2
� (�h + �h0)2 = '1;h;h0�1;h;h0 + '2;h;h0�2;h;h0

+ '3;h;h0�3;h;h0 + '4;h;h0�4;h;h0 ; (21)

�h + �h0 = �1;h;h0 + �2;h;h0 + �3;h;h0 + �4;h;h0 ; (22)

�ah;h0 � (�h + �h0) = 'y;h;h0 ; y = 1; 2; 3; 4; (23)

where the non-linear problem is divided into 4 linear
sections with slopes 'h;l and 'y;h;h0 . Such linearized
problem should be solved along with several opera-
tional and investment limitations. In order to ensure
that such restrictions be materialized, constraints (24)-
(39) are applied to the linearized problem as follows:

0 � pih � pmax
i

_xi; 8h;8i 2 G: (24)

Constraint (24) is to consider the minimum and
maximum generation capacity limits of installed dis-
patchable units. In addition, the following constraints
are considered to formulate the limits on a battery
storage:

0 � pchi;h � pchmaxUi;t; 8h;8i 2 E; (25)

0 � pdchi;h � pdchmaxViydh; 8h; 8d;8y; 8i 2 E; (26)

Uiydh + Viydh � 1; 8y; 8d;8h; 8i 2 E; (27)

0 � Cih � Cmax
i

_xi; 8h; 8i 2 E; (28)

Ci;t = Ci;h�1 + �pchi;h � (1=�)pdchi;h ; 8h; 8i 2 E; (29)

0 � Viydh � _xi; 8h; 8d;8y; 8i 2 E; (30)

0 � Uiydh � _xi; 8h; 8d;8y; 8i 2 E: (31)

The operational limits of storage units are de-
scribed in Constraints (25)-(31). Constraints (25)
and (26) are to incorporate charge/discharge limits of
storage unit while Constraint (27) ensures that the
units are not charged and discharged simultaneously.
The state of charge of the storage units is calculated
in Constraint (28). Constraint (29) is to ensure that
the energy saved in the units is within the upper and
lower limits. Constraints (30) and (31) guarantee that
only the storage units chosen to be installed make
contribution to the system operation. Besides the
aforementioned constraints, the problem is faced with
some technical restrictions given below:

�pmax
M � pMh � pmax

M ; 8h; (32)X
i2(G;W )

Piydhs +
X
i2S

(P dchiydhs � P chiydhs) + PM;ydhs

+ LSydhs = Dydhs;

8h;8d;8y; 8k;8s 2 S: (33)

Constraint (32) ensures that the power exchanged
with the main grid is limited by the associated limit at
PCC. Equation (33) enforces maintaining a balance be-
tween generation and consumption in each time period.
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Similarly, revenue and pro�t must be restricted by
under-regulation constraints so as to preserve fairness
as follows:
�ykt! = �serviceykt! + �energyykt! ; (34)

�serviceykt! � �servicek ; (35)X
y

X
k

X
t

�serviceykt! PDiykt! � �average

�X
y

X
k

X
t

PDiykt!: (36)

Constrains (34)-(36) give regulatory constraints
on selling prices and yearly income of the MG owner.
For this purpose, price in any time interval is divided
into service and energy parts. The energy price is
equal to the market price in the same time interval,
while the MG owner determines the service price.
Constraint (35) puts a cap over the service price.

Now, the proposed solving procedure is intro-
duced in the next sub-section, where the original
linearized model is decomposed into a master problem
and operation and resilient sub-problems by Benders
decomposition technique.

3.2. Solving procedure
3.2.1. Master problem
The objective function of the master problem is com-
posed of the �rst two items in Eq. (2). This problem
is solved on a yearly basis aiming at minimizing the
investment costs (Constraint (37)). Thereby, decision
variables related to the installation state of distributed
generation and storage units are given values in this
problem. The results are then sent to the operation
sub-problems. In Constraint (37), variable � is a
projected operation cost in the investment problem.
This sub-problem calculates the upper-bound of the
Benders decomposition problem:

Min
X
y

X
i2(G;W )

KyCCiyPmax
i xi

+
X
y

X
i2S

Ky(CPiyPmax
i + CEiyCmax

i )xi

+
X
y

ky�y: (37)

3.2.2. Operation sub-problems
In computing the lower bound, the operation sub-
problems are in charge of scheduling selling prices,
charge/discharge power of storage units, output power
of dispatchable generation units, and power imports
from the main grid with the aim of maximizing pro�t
of the MG owner. Accordingly, the objective function
of the operation sub-problem comprises the third and
fourth items in Eq. (2) with respect to the master-

level decisions and in compliance with the following
constraints:

� Generation capacity constraints (Constraint (24));
� Power and energy limitations of storage units (Con-

straints (25)-(31));
� System power balance and PCC limitation (Con-

straints (32)-(33));
� Regulatory constraints (Constraints (34)-(36)).

Having compared lower and upper bounds, if the
convergence criterion is not met, the feasible operation
cut is formed as follows:
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X
d
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X
i2G

�iydhPmax
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d

X
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+
X
d

X
h

X
i2G

�iydhCmax
i (xi;t � _xi;t); (38)

where
_
Qy is a calculated objective value of the opera-

tion sub-problems in a year and �iydh, �iydh, #iydh, and
�iydh are dual variables associated with dispatchable
generation units, non-dispatchable generation units,
rated power of storage units, and rated capacity of
storage units. Added to the master problem in the next
iteration, the cut revises the combination of installing
units.

3.2.3. Resiliency sub-problem
Calculated in the master problem and operation sub-
problems, the optimal investment plan and scheduled
operation are assessed in the resiliency sub-problem to
ensure energy adequacy for the islanding event. By
doing so, the MG is capable of supporting critical loads
for tisland hours as the expected continuous time during
which the MG is not supported by the main grid. The
resiliency sub-problem formulation is as follows:

Min w =
X
t

SL1;ydh + SL2;ydh; (39)

tstart+tislandX
h=tstart

X
i2G

Piydhs +
X
i2S

(P dchiydtstarts � P chiydtstarts)

tisland + SL1;ydtstart � SL2;ydtstart

�
tstart+tislandX
h=tstart

Dcritical
ydh

8h;8d;8y; (40)
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_x = xi 8i 2 ES;G; (41)

where SLs are positive slack variables, Dcritical refers
to the critical load of the planned MG, and tstart is
the time when islanding happens. Eq. (39) minimizes
the mismatches that occur in Relation (40). Here,
Relation (40) is to ensure that the net energy provided
by dispatchable units and charge/discharge of battery
storage units is su�cient to support critical load
hosted by the MG during the islanding period. The
sub-problem must also meet the following constraints
according to the master-level decisions (Eq. (41)):

� Power and energy limitations of storage units (Con-
straints (25)-(31));

� System power balance (Constraint (32)).

Having the sub-problem solved, the �nal solution
is obtained if the mismatch is zero. Otherwise, the
solution must be revised. The revision is performed
via changing the investment plan by forming resiliency
cut (Relation (42)) and sending it back to the master
problem.

_w +
X
t

X
i2G

�i;t(xi;t � _xi;t)

+
X
t

X
i2S

�chi;t(xi;t � _xi;t)

+
X
t

X
i2S

�dchi;t (xi;t � _xi;t) < 0; (42)

where � and �i;t are dual variables associated with
binary variables of dispatchable generation units and
rated power of storage units, respectively.

4. Numerical results

In this section, the proposed methodology is applied to
a test system. In order to demonstrate the framework
of the simulated MG, the corresponding diagram of
the proposed model is depicted in Figure 1. An MG is
to be installed for a group of electricity consumers with
a peak annual load of 8.5 MW. The set of candidates
includes 11 DERs (consisting of 6 dispatchable units, 2
non-dispatchable units, and 3 energy storage systems).
The characteristic data of energy storage units are
provided in Table 1. Table 2 presents deterministic
parameters of the dispatchable units. Similarly, the
technical data associated with non-dispatchable units
are given in Table 3, illustrating qualities of wind and
solar generators.

Energy storage e�ciency is considered to be 90%
for all candidates. The load, variable renewable
generation, and market prices are forecasted based
on the historical data obtained from IIT Campus
Microgrid [34]. The planning horizon is 20 years.

The 
exible and critical loads are considered 40
and 60%, respectively. In order to avoid computational
complexities, any year, which is 8760 hours, is divided
up into 8 periods. The reason behind choosing 8
periods is that all workdays in a week during one

Table 1. Characteristics of the energy storage units.

Unit no. Rated power
(MW)

Rated energy
(MWh)

Annualized investment
cost-power ($/MW)

Annualized investment
cost-energy ($/MWh)

1 1 6 60000 30000
2 2 6 30000 30000
3 3 6 20000 30000

Table 2. Characteristics of dispatchable units.

Unit no. Rated power
(MW)

Cost coe�cient
($/MW)

Annualized investment
cost ($/MWh)

1 5 90 50000
2 5 90 50000
3 3 70 70000
4 3 70 70000
5 2 60 100000
6 2 60 100000

Table 3. Characteristics of non-dispatchable units.

Unit no. Rated power
(MW)

Cost coe�cient
($/MW)

Annualized investment
cost ($/MWh)

1 2 0 120000
2 2 0 180000
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season experience approximately similar market prices,
loads, and renewable generation. Similarly, weekends
have such a feature. In this way, the market price,
load, and wind and solar generation in one typical
day are employed for all days in the related period.
Therefore, the problem for every year is solved for 8
days rather than 365 days. Based on the forecasts, the
likely wind and solar generation scenarios for spring are
illustrated in Figures 3 and 4, respectively. In addition,
Figures 5 and 6 demonstrate one scenario of market
prices and solar generation in all seasons of the �rst
year, respectively.

As noted earlier, the developed model encourages
consumers to reduce their load when the market prices
are high or interior renewable generation drains away.
As demonstrated in Eq. (4), calculated sale prices in
comparison with the relevant 
at prices determine how
much load should contribute to the demand response
program. For this reason, 
at prices are de�ned by

Figure 3. Output of wind turbine generators{spring, �rst
year.

Figure 4. Output power of solar panels{spring, �rst year.

Figure 5. Hourly prices for one scenario{�rst year.

Figure 6. Output power of solar panels{all seasons.

which consumers pay a �xed price for the amount of
electricity they consume. To quantify such prices, 2

at prices are calculated for the peak and o�-peak
durations of the year (i.e., summer and winter as peak
durations, and spring and fall o�-peak). Speci�cally,
lower sale prices than 
at prices enforce demand to shift
to the relevant hours, while higher price shifts demand
to other hours. Having calculated the amount of the
load shifted at di�erent load points and elasticities, the

at prices are calculated using the following formula:

�flat =

P
s

P
y

P
d

P
h
!s�spotsydhP

fllat
sydhP

s

P
y

P
d

P
h
!sP fllatsydh

; (43)

where P fllatsydh and �spotsydh are base load (without imple-
menting time-varying demand response program) and
electricity market price, respectively.

To investigate validity of the method, two cases
are considered in the simulations. In the �rst case,
called base case hereinafter, demand response is not
enabled. According to the simulations results for the
�rst case, it is economically bene�cial to install all
candidate DERs, since the installing costs are divided
up between several years of the planning horizon and
the lack of demand response potentials forces installing
dispatchable units to preserve resiliency.

To enable demand response in the second case, the
self-elasticity and cross-elasticity coe�cients are set to
�0:2 and 0.0087, respectively. This case is simulated.
According to the results, dispatchable units 5 and 6
are not installed if demand response potentials are
activated. It can also be seen in Table 4 that the
operation cost and purchasing cost in the base case
are more than the corresponding costs of the case in
which demand response is enabled. Needless to say,
demand response being disable in the base case, the
problem forces the MG owner to install more units and
hence, the operation and investment costs increase. In
addition, cost of purchasing power from the main grid
increases, because it is impossible to move the loads
to lower-price hours. Furthermore, pro�t decreases
since the operation, investment, and cost of purchasing
power from the main grid increase.



3690 M. Chegnizadeh and A. Safdarian/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 3681{3693

Table 4. Comparison between cases studied.

Scenario Pro�t Operation cost Cost of purchasing power
from the main grid

Base case 20275181 1628394 548871
The case with time-varying

demand response
24654672 792507 {407434

Figure 7. Simulation results for diverse cross-elasticities:
(a) �rst year, summer, workdays (b) �rst year, fall,
weekend and (c) �rst year, winter, workdays.

Since the elasticity coe�cients are intertwined
with hard-to-predict social and economic aspects of
human life with time, the simulation is repeated for
a wide spectrum of self and cross elasticity coe�cients.
The obtained load pro�les associated with diverse
elasticity coe�cients are shown in Figure 7(a)-(c). The
�gures are respectively associated with the simulation
results of summer workdays, fall weekends, and winter
workdays in the �rst year of the studied horizon. It

Figure 8. Cost of purchasing power from the main grid
for diverse cross-elasticities.

can also be seen in Figure 8 that energy procurement
cost from the main grid decreases (negative cost means
attaining revenue) by increasing the value of elasticity
coe�cients. As the maximum revenue that can be
earned by the MG owner is �xed by the regulatory
constraints, increase in the attained pro�t translates
into decrease in overall costs. This observation reveals
the importance of the approach. In Figure 7(a), the
MG owner is confronted with higher peak demands
within the period from 6 pm to 10 pm. In case of higher
elasticity coe�cients (i.e., jcross-elasticityj > 0:01),
which means that more 
exible load is available, this
observation is proven. The main reason is that market
prices decrease in these hours, while a great number of
renewable resources (either solar or wind) are available
in the MG. As a result, the proposed problem designs
the sale prices in a way to shift demand to these
hours. The same results can be seen for hours 21-23
in Figure 7(b) as well as for hours 8-10 in Figure 7(c).

Besides the uncertainty associated with elasticity
coe�cients, the share of responsive load, which is
a�ected by time-varying prices, is uncertain. The
simulation results associated with di�erent shares for
responsive load are demonstrated in Figure 9(a)-(c).
According to the results, demand response, as a load
shaping tool, presents an alternative for the installed
generation capacity. As can be seen, the capacity of
necessary dispatchable units decreases as the share of
responsive load grows. Furthermore, Figure 10 presents
the cost of purchasing power from the main grid. It is
observable that the cost decreases dramatically as the
share of responsive load increases.

Figure 11 shows simulation results for diverse self-
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Figure 9. Simulation results for diverse percentages of

exible load: (a) First year, summer, workdays (b) �rst
year, fall, weekend and (c) �rst year, winter, workdays.

Figure 10. Cost of purchasing power from the main grid
for diverse percentages of 
exible loads.

Figure 11. Simulation results for diverse cross-elasticities.

elasticities. With reference to this �gure, dramatic

uctuations can be seen for hours around 15. The
reason can be traced back to Eq. (4), according to
which when the sale price is near �flat, minor changes
in price lead to change in the second part. As a
result, considerable increase or decrease in load can
be observed, especially when the problem is faced
with higher elasticity coe�cients. Captured via price
elasticity coe�cients, demand behavior model is the
weakness of the proposed mathematical framework
based on such statistics. The elasticity matrix cannot
appropriately simulate and model human behavior in
response to price variations. Given that, unrealistic
results are observed in Figure 11, emphasizing the
need for further researches and developments over more
practical methods.

5. Conclusion

To cope with the need for fast and 
exible, but
expensive, units in resilient renewable energy-based
MGs, this paper augmented price-based demand re-
sponse potentials in MG design problem in order to
maximize pro�t of the MG owner. To ensure fairness
of retail prices, regulatory constraints were considered
in the model. Mainly to alleviate complexity of
the proposed model, Benders decomposition technique
was applied to decomposing the model into a master
problem and operation and resiliency sub-problems.
The master problem determined binary variables to
optimally design an MG; the operation sub-problems
optimized operation of the designed MG; and the re-
siliency sub-problem ensured safe operation of the MG
during islanding event. Simulations for a sample MG
illustrated e�ciency and e�ectiveness of the proposed
model and solution algorithm. Moreover, the results
demonstrated a remarkable improvement in the pro�t
of the MG owner as demand response potentials were
enabled via the proposed approach.

Nomenclature

Indices and symbols

ch Superscript for energy storage charging
mode

dch Superscript for energy storage
discharging mode

flat Superscript for the situation without
time-varying demand response program

I Index of DERs
h; d; y Indices of hour, period, and year

Sets

ES Set of batteries
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G Set of dispatchable units
S Set of scenarios
W Set of non-dispatchable units

Parameters

E Elasticity coe�cient matrix
e Elasticity coe�cient
C Rated capacity of energy storage

systems
c Generation price for dispatchable units
CC Annualized investment cost of

generating units
CP Annualized investment cost of

storage-power
CE Annualized investment cost of

storage-energy
K Discount rate
R Revenue attained by the MG owner
� Energy storage e�ciency
ws Probability of scenario
� Market price

Variables

D Demand after enabling demand
response program

P Power output of DERs
PM Power exchange between MG and the

main grid
Ui;t State of charge (0/1)
Vi;t State of discharge (0/1)
X State of installing DERs (0/1)
� Designed time-varying price
�a; �a; v;
'; �; � Auxiliary variables
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