Decentralized energy trading framework for active distribution networks with multiple microgrids under uncertainty

Document Type : Article


Faculty of Engineering, Lorestan University, 5 km Tehran Road, Khorramabad, P.O. Box 68151-44316, Lorestan, Iran.


The ever-increasing need for more reliable power supply, cost-effective and environmental-friendly utilization of distributed energy resources will result in formation of multiple microgrids (MMGs) in the near future of distribution system. To achieve this prospective, a coordination among MMGs is necessary. Accordingly, this paper proposes a new non-hierarchical multilevel architecture for the optimal scheduling of active distribution network (ADN) with MMGs. The proposed model is a decentralized decision making algorithm to optimally coordinate the mutual interaction between local optimization problems of ADN and MMGs. A non-hierarchical analytical target cascading (ATC) method is presented to solve the local optimization problems in parallel. Also, underlying risks of the energy trading caused by renewable generation uncertainty are reflected in both the objective functions and the constraints of local optimization problem. The numerical results on modified IEEE 33-bus distribution test system containing two microgrids demonstrate the effectiveness and merits of proposed model.


1. Fotuhi-Friuzabad, M., Safdarian, A., and Moeini-  Aghtaie, M., et al. Upcoming challenges of future  electric power systems: sustainability and resiliency",  Scientia Iranica, 23(4), pp. 1565-1577 (2016).  2. Shahidehpour, M. and Fotuhi-Friuzabad, M. Grid  modernization for enhancing the resilience, reliability,  economics, sustainability, and security of electricity  grid in an uncertain environment", Scientia Iranica,  23(16), pp. 2862-2873 (2016).  3. Lu, W., Liu, M., Lin S., et al. Incremental-oriented  ADMM for distributed optimal power ow with discrete  variables in distribution networks", IEEE Trans.  Smart Grid, 10(6), pp. 6320-6331 (Nov. 2019). DOI:  10.1109/TSG.2019.2902255  4. Ross, M., Abbey, C., Bou_ard, F., et al. Multiobjective  optimization dispatch for microgrids with a high  penetration of renewable generation" , IEEE Trans.  Sustain. Energy, 6(4), pp. 1306-1314 (2015).  5. Fathi M. and Bevrani, H. Statistical cooperative  power dispatching in interconnected microgrids",  IEEE Trans. Sustain. Energy, 4(3), pp. 586-593  (2013).  6. Ouammi, A., Dagdougui, H., Dessaint L., et al. Coordinated  model predictive-based power ows control  3620 M. Doostizadeh et al./Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 3606{3621  in a cooperative network of smart microgrids", IEEE  Trans. Smart Grid, 6(5), pp. 2233-2244 (2015).  7. Haddadian, H. and Noroozian, R. Multi-microgrids  approach for design and operation of future distribution  networks based on novel technical indices", Appl.  Energy, 185, pp. 650-663 (2017).  8. Haddadian, H. and Noroozian, R. Multi-Microgridbased  operation of active distribution networks considering  demand response programs", IEEE Trans.  Sustain. Energy, 10(4), pp. 1804-1812 (Oct. 2019).  DOI:10.1109/TSTE.2018.2873206  9. Zhang, B., Li Q., Wang, L., and Feng, W. Robust optimization  for energy transactions in multi-microgrids  under uncertainty" , Appl. Energy, 217, pp. 346-360  (2018).  10. Alam, M.N., Chakrabarti, S., and Ghosh, A. Networked  microgrids: State-of-the-art and future perspectives",  IEEE Trans. Ind. Inform., 15(3), pp. 1238-  1250 (2019).  11. Toutounchi, A.N., Seyedshenava, S., Contreras J.,  et al. A stochastic bilevel model to manage active  distribution networks with multi-microgrids", IEEE  Syst. J., 13(4), pp. 4190-4199 (Dec. 2019). DOI:  10.1109/JSYST.2018.2890062  12. Wang, Z., Chen, B., Wang, J., et al. Coordinated  energy management of networked microgrids in distribution  systems", IEEE Trans. Smart Grid, 6(1), pp.  45-53 (2015).  13. Minciardiand, R. and Robba, M. A bilevel approach  for the stochastic optimal operation of interconnected  microgrids", IEEE Trans. Autom. Sci. Eng., 14(2), pp.  482-493 (2017).  14. Wang, H. and Huang, J. Incentivizing energy trading  for interconnected microgrids" , IEEE Trans. Smart  Grid, 9(4), pp. 2647-2657 (2018).  15. Park, S., Lee, J., Bae, S., et al. Contribution-based  energy-trading mechanism in microgrids for future  smart grid: A game theoretic approach", IEEE Trans.  Ind. Electron., 63(7), pp. 4255-4265 (2016).  16. Jadhav, A.M. and Patne, N.R. Priority-based energy  scheduling in a smart distributed network with multiple  microgrids", IEEE Trans. Ind. Inform., 13(6), pp.  3134-3143 (2017).  17. Du, Y., Wang, Z., Liu, G., et al. A cooperative game  approach for coordinating multi-microgrid operation  within distribution systems", Appl. Energy, 222, pp.  383-395 (2018).  18. Mei, J., Chen, C., Wang, J., et al. Coalitional  game theory based local power exchange algorithm for  networked microgrids", Appl. Energy, 239, pp. 133-141  (2019).  19. Liu, Y., Guo, L., and Wang, C. A robust operationbased  scheduling optimization for smart distribution  networks with multi-microgrids", Appl. Energy, 228,  pp. 130-140 (2018).  20. Nunna, H. and Doolla, S. Multiagent-based  distributed-energy-resource management for  intelligent microgrids", IEEE Trans. Industr.  Electron., 60(4), pp. 1678-1687 (2013).  21. Rahman, M.S. and Oo, A.M.T. Distributed multiagent  based coordinated power management and control  strategy for microgrids with distributed energy  resources", Energy Convers. Manage., 139, pp. 20-32  (2017).  22. Ju, L., Zhang, Q., Tan, Z., et al. Multi-agentsystem-  based coupling control optimization model for  micro-grid group intelligent scheduling considering  autonomy-cooperative operation strategy", Energy,  157, pp. 1035-1052 (2018).  23. Kou, P., Liang, D., and Gao L. Distributed EMPC of  multiple microgrids for coordinated stochastic energy  management", Appl. Energy, 185, pp. 939-952, (2017).  24. Holjevac, N., Capuder, T., Zhang, N., et al. Corrective  receding horizon scheduling of exible distributed  multi-energy microgrids", Appl. Energy, 207, pp. 176-  194 (2017).  25. Wang, H. and Huang, J. Incentivizing energy trading  for interconnected microgrids", IEEE Trans. Smart  Grid, 7(6), pp. 2647-2657 (2018).  26. Gao, H., Liu, J., Wang, L., et al. Decentralized energy  management for networked microgrids in future distribution  systems", IEEE Trans. Power Syst., 33(4), pp.  3599-3610 (2018).  27. Feng, C., Wen, F., Zhang, L., et al. Decentralized  energy management of networked microgrid based  on alternating-direction multiplier method", Energies,  11(10), p. 2555 (2018).  28. Mohiti, M., Monsef, H., Anvari-Moghaddam, A., et al.  A decentralized robust model for optimal operation of  distribution companies with private microgrids", Int.  J. Elect. Power Energy Syst., 106, pp. 105-123 (2019).  29. Anjos, M.F., Lodi, A., and Tanneau, M. A decentralized  framework for the optimal coordination of  distributed energy resources" , IEEE Trans. Power  Syst., 34(1), pp. 349-359 (2019).  30. Kraning, M., Chu, E., Lavaei, J., and Boyd, S.  Dynamic network energy management via proximal  message passing" , Foundations and Trendsrin Optimization,  1(2), pp. 73-126 (2014).  31. Kargarian, A., Fu, Y., DorMohammadi, S., et al.  Optimal operation of active distribution grids: a  system of systems framework", IEEE Trans. Smart  Grid, 5, pp. 1228-1237 (2014).  32. Zhao, B., Wang, X., Lin, D., et al. Energy management  of multiple microgrids based on a system  of systems architecture", IEEE Trans. Power Syst.,  33(6), pp. 6410-6421 (2018).  33. Xie, M., Ji, X., Hu, X., et al. Autonomous optimized  economic dispatch of active distribution system with  multi-microgrids", Energy, 153, pp. 479-489 (2018).  M. Doostizadeh et al./Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 3606{3621 3621  34. Kargarian, A., Mohammadi, J., Guo, J., et al. Toward  distributed/decentralized DC optimal power ow implementation  in future electric power systems", IEEE  Trans. Smart Grid, 9(4), pp. 2574-2594 (2018).  35. Zimmerman, R.D., Murillo-Sanchez, C.E., and  Thomas, R.J. MATPOWER's extensible optimal  power ow architecture", in Proc. 2009 Power &  Energy Society General Meeting, Calgary, AB, Canada  (2009).  36. Farivar, M. and Low, S.H. Branch ow model: Relaxations  and convexi_cation-Part I", IEEE Trans. Power  Syst., 28(3), pp. 2554-2564 (2013).  37. Kargarian, A., Fu, Y., and Li, Z. Distributed securityconstrained  unit commitment for large-scale power  systems" , IEEE Trans. Power Syst., 30(4), pp. 1925-  1936 (2015).  38. Kargarian, A., Mehrtash, M., and Falahati, B. Decentralized  implementation of unit commitment with  analytical target cascading: A parallel approach",  IEEE Trans. Power Syst., 33(4), pp. 3981-3993 (2018).  39. Baran, M.E. and Wu, F.F. Network recon_guration  in distribution systems for loss reduction and load  balancing", IEEE Trans. Power del., 4(2), pp. 1401-  1407 (1989).  40. Lofberg, J. Yalmip : A toolbox for modeling and  optimization in Matlab", In Proceedings of the CACSD  Conference, Taipei, Taiwan, pp. 284-289 (2004).  41. IBM ILOG CPLEX (2019). [Online]. Available: