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Abstract. The ever-increasing need for more reliable power supply as well as cost-e�ective
and environmentally friendly utilization of distributed energy resources will result in the
formation of Multiple Micro-Grids (MMGs) in the near future of distribution system. To
reach this prospect, coordination among MMGs is necessary. Accordingly, this paper
proposes a new non-hierarchical multi-level architecture for the optimal scheduling of
Active Distribution Network (ADN) with MMGs. The proposed model is a decentralized
decision making algorithm to optimally coordinate the mutual interaction between local
optimization problems of ADN and MMGs. A non-hierarchical Analytical Target Cascading
(ATC) method is presented to solve the local optimization problems in parallel. Also, the
underlying risks of energy trading caused by renewable generation uncertainty are reected
in both the objective functions and the constraints of local optimization problem. The
numerical results of modi�ed IEEE 33-bus distribution test system containing two micro-
grids demonstrate the e�ectiveness and merits of the proposed model.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Micro-Grids (MGs) are small-scale electrical networks
with a de�ned border integrating various types of
renewable and non-renewable Distributed Generations
(DGs), Energy Storage Systems (ESSs), and control-
lable loads. MGs may act as either a power source or a
load when they are connected to an Active Distribution
Network (ADN) or they can work individually during
islanded operation. These features have a great signif-
icance in promoting economic resiliency and reliability
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of ADNs [1,2]. Given the increasing growth of MGs in
ADNs, the coordinated operation of ADN and several
MGs has become a new research hotspot. Conven-
tionally, distribution system operator has the decision
authority to operate the entire distribution system.
However, ADN and MGs are autonomous entities with
their own rules and policies, each of which solves its
local energy management problem with the goal of
maximizing its bene�ts [3]. Therefore, only limited
information between ADN and MGs can be exchanged
for privacy and security concerns. Moreover, operation
of AND with Multiple MGs (MMGs) becomes more
challenging when di�erent types of uncertainty such as
wind and solar generation, and electrical vehicles are
noticed [4]. Considering several security, privacy, and
uncertainty issues, coordinated operation of ADN with
MMGs is one of the most challenging tasks of modern
power systems.
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Several studies of integrated MGs, which are also
named networked MGs, have so far been presented in
the literature. With regard to the energy manage-
ment techniques used in the operation of networked
MGs, these researches can be categorized into two
groups with centralized [5-9] and decentralized [10-33]
approaches. In the centralized optimization approach,
all entities are gathered as one system with a united
objective and a central controller is designed to manage
the operation of all resources and loads irrespective
of their individual interests. From this viewpoint, a
cooperative power dispatch algorithm for MMGs with
the objective of grid operational cost minimization was
presented by Fathi and Bevrani [5]. Ouammi et al. [6]
presented a Model Predictive Control (MPC) strategy
to determine the scheduling of power exchanges among
MGs and their internal resources with the aim of
maximizing global bene�ts. In the studies carried out
by Haddadian and Noroozian [7,8], technical indices for
quality evaluation of ADN were presented to achieve
optimal operation of ADN with MMGs. In order
to obtain the scheduling scheme, which minimized
operating cost of MMGs under renewable generation
uncertainties, a two-stage robust optimization model
was presented by Zhang et al. [9]. However, centralized
scheme requires a massive communication system for
data exchange, leads to high computation burden when
scale of the system is large, barely covers di�erent
interests of the ADN and MGs, and is more vulnerable
to cyber-attack [10]. Hence, decentralized approaches
have been proposed to address these shortcomings.

In some studies [11-13], bilevel optimization prob-
lems have been proposed to model the interactions
between the ADN in the upper level and MGs in the
lower level, where MGs are modeled as nodes in the
ADN and their internal power ow is neglected. Also,
the uncertainties related to demand and renewable gen-
eration are captured by the scenario-based two-stage
stochastic optimization approach. Some theoretical
game strategies have also been presented in the litera-
ture [14-19] for operation of ADN with multiple MGs.
An incentive mechanism using Nash negotiating theory
was suggested in Wang and Huang [14] to encourage
energy trading and fair pro�t sharing among MGs.
Contribution-based and priority-based energy-trading
strategies among MGs in a competitive environment
were designed by Park et al. [15] and Jadhav and
Patne [16], respectively. These strategies were non-
pricing-based approaches and could only be applied to
buyer MGs. Cooperative and coalitional approaches to
local power exchange in networked MGs were presented
by Du et al. [17] and Mei et al. [18], respectively.
Moreover, a collaborative Stackelberg game strategy
was established by Liu et al. [19] to promote power
trading among MGs. The uncertainties caused by
renewable resources and demand were handled through

a two-stage robust optimization model. Although these
strategies consider the local power exchanges for both
buyer MGs and seller MGs, network constraints of
the MGs are ignored. In addition to the theoreti-
cal game strategies, several methods based on multi-
agent system have been developed [20-22] to achieve
decentralized control in the energy management of
MMG systems. A distributed MPC strategy was also
suggested by Kou et al. [23] and Holjevac et al. [24] to
maintain a stable power interchange among MGs under
the uncertainties of renewable energy and load.

From another perspective, coordinated operation
of ADN and multiple MGs has been envisioned in
recent researches by utilizing distributed optimization
techniques such as Alternating Direction Method of
Multipliers (ADMM) [25-28], Dantzig-Wolfe decompo-
sition [29], proximal message passing [30], Analytical
Target Cascading (ATC) [31-33], etc. These algorithms
typically decompose the whole problem into several
subproblems to distribute computation and reduce
data communication [34]. For example, ADMM-
based methods consider each MG as a distinct interest
subject. Then, the objective function of each MG
is accompanied by an augmented Lagrangian penalty
term to model the interactive electric power of tie-
lines and economic scheduling of ADN with MMGs
is determined iteratively. In ATC method, the entire
system is decomposed hierarchically into subsystems
in decreasing order. Then, each subsystem within the
hierarchy is coupled with the lower/higher-level sub-
system through target/response variables. Target and
response consistencies are relaxed as penalty functions
in the optimization problem of the subsystem and the
optimal solution is iteratively obtained. In a compari-
son of several algorithms for distributed/decentralized
optimization in power systems carried out by Kargarian
et al. [34], it was shown that ATC and ADMM needed a
low amount of information exchange between subprob-
lems per iteration and they fairly protected the privacy
of subproblems. However, the computational e�ort
with these algorithms was relatively high. Moreover,
both the classical ADMM and ATC needed a central
coordinator that made them potentially vulnerable to
cyber-attacks or manipulation of information. Com-
pared with ADMM algorithm, ATC had exibilities
in the choice of penalty functions and coordination of
subproblems. Moreover, solution time of ATC method
was sensibly lower than that of ADMM [34].

In the above review of literature, it is notable
that there are three concerns in the development of
coordinated operation of ADN with MMGs. The �rst
one is the optimal energy trading among ADN and
MMGs. The second issue is the decentralized control
architecture, which gives independence to each MG.
The last one is the uncertainty management of MGs
operation. Motivated by the aforementioned research
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gap, this paper proposes a decentralized decision mak-
ing algorithm that allows parallel implementation of
local optimization problems of ADN and MGs without
the necessity for any kind of central coordinator to
synchronize the local problems. The proposed algo-
rithm allows direct communication between any two
local problems. Thus, it is potentially less vulnerable
to failure in information exchange and cyber-attacks
than the classical ATC is with central coordinator. The
main contributions of this paper are as follows:

� A non-hierarchical ATC algorithm is proposed for
decentralized optimal transactive energy implemen-
tation in ADN with MMGs. The proposed algo-
rithm allows parallel implementation of local opti-
mization problems without the need for any form
of central coordinator. Therefore, the proposed
algorithm achieves the same accuracy and conver-
gence as hierarchical ATC does, while it is less
vulnerable to cyber-attacks and data manipulation,
and requires much less computational e�ort;

� A fully distributed second-order conic programming
method is proposed to achieve an exact model of the
network of MGs using the AC optimal power ow,
which, to the best of our knowledge, has not been
considered in the literature. The proposed method
ensures that local energy trading between ADN and
MGs is accounted for in the OPF-based energy
management systems. Therefore, internal network
limits of MGs are explicitly considered while very
little boundary information is exchanged;

� A risk-based day-ahead scheduling model is estab-
lished in each local problem to capture the under-
lying risks of the scheduling imposed by multiple
source-load uncertainties. The risks are calculated
based on the model-free probabilistic distributions
of net demand and considered as penalties in the
objective functions as well as limits of risks in
the constraints. The nonlinear terms related to
the risks are linearized, and the proposed model is
transformed to a Mixed-Integer Second-Order Conic
Programming (MISOCP) problem.

The remainder of this paper is organized as
follows: Section 2 describes the structure of the ADN
with MMGs and presents the mathematical formula-
tion of the optimization problem for ADN and MGs.
Section 3 presents the proposed non-hierarchical ATC
algorithm. The simulation results for a modi�ed IEEE
33 distribution test system are presented in Section 4 to
show the e�ciency of the proposed algorithm. Finally,
conclusions are given in Section 5.

2. System architecture and modeling

2.1. System architecture
In this paper, the ADN under study contains several
MGs connected to di�erent nodes, in which energy
trading between ADN and MGs is allowed. As depicted
in Figure 1, each MG may have several Wind Tur-
bines (WTs), Photovoltaics (PVs), Controllable DGs
(CDGs), battery ESSs, and local loads. Each MG

Figure 1. An active distribution network comprising multiple MGs.
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operator is required to provide nodal power balance,
meet resource limitations, and secure network opera-
tion. Distribution Network (DN) operator is respon-
sible for satisfying DN-owned generation resources,
system operation safety, and reliable power supply of its
loads. Moreover, both ADN and MGs are expected to
minimize their own cost. As well, power exchange via
the tie-lines strongly couples their scheduling problems.
Thus, they are required to share boundary information
with each other via a communication infrastructure to
bidirectionally determine the optimal energy trading.
Meanwhile, the DN can interchange energy with the
main grid.

2.2. Mathematical formulation
This section presents the local optimization problems
of DN and MGs under the uncertainties of renewable
energy and load. To do so, we describe all parts of
operation cost, all the constraints of the optimization
problem, and the uncertainty modeling for both DN
and MGs. Then, the proposed non-hierarchical ATC
algorithm for energy interchange coordination of DN
and MGs will be presented in Section 3. The vari-
ables and parameters de�ned in the proposed model
are listed and described in Nomenclature. To avoid
duplications, variables and parameters are speci�ed
by superscript A 2 fDN;MG1;MG2; :::;MGMg, which
means that the mathematical formulations are applied
to both DN and MGs.

2.2.1. Cost functions and objectives
In the proposed model, both DN and MGs aim to
minimize their local operation costs, including gener-
ation cost for CDGs (cos tACDGs), ESSs operation cost

(cos tAESSs), operating reserves cost (cos tARes), import-
ing power from the main grid that is only applied to DN
(cos tDNPs ), and underlying risk costs associated with
renewable generation and load uncertainties (cos tARisk).
Therefore, the objective function can be expressed by
Eq. (1) as shown in Box I.

2.2.2. CDGs operating constraints
Each CDG has several operating limitations that are
represented by Eqs. (2)-(12). Constraints (2) and (3)
respectively guarantee the minimum up and down time
limits. The power output plus the reserve of a CDG
is limited by Eqs. (4) and (5). Maximum upward and
downward reserves provided by each CDG are respec-
tively restricted via Eqs. (6) and (7). Constraints (8)
and (9) represent CDG downward and upward ramping
capability limits, respectively. Reactive power limi-
tations and the linearized form of quadratic relation
between active and reactive power for each CDG are
represented by Eqs. (10)-(12).
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Box I
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TOFFiX
t=1
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i ; (7)

PDG(A)
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i;t � RDDG(A)
i ; (8)

PDG(A)
i;t � PDG(A)

i;t�1 � RUDG(A)
i ; (9)

Q
�
DG(c)
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PDG(A)
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PDG(A)
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2.2.3. ESSs constraints
In this paper, it is assumed that ESSs are connected to
the network during the operating day, and they should
meet the following constraints for secure operation and
periodic deployment.

0 � PSD(A)
i;t � PSD(A)

i � uSD(A)
i;t ; (13)

0 � PSC(A)
i;t � PSC(A)

i � uSC(A)
i;t ; (14)

uSC(A)
i;t + uSD(A)

i;t � 1; (15)

ES(A)
i;t =ES(A)

i;t�1 � 1
�SD(A)
i

PSD(A)
i;t �T

+ �SC(A)
i PSC(A)

i;t �T; (16)

ES(A)
i � ES(A)

i;t � ES(A)
i ; (17)

where Eqs. (13) and (14) are the maximum dis-

charge/charge power constraints; Eq. (15) determines
the charging and discharging status; the current energy
stored in ESS is calculated via Eq. (16); and Eq. (14)
indicates that the energy level of ESS should be within
speci�c limits.

2.2.4. Underlying risks of renewable output and
demand

As shown in Eq. (1), the proposed model considers
the underlying risk costs related to renewable output
curtailment and loss of load. In order to calculate the
Expected Renewable Curtailment (ERC) and Expected
Energy Not Supplied (EENS), the de�ciencies of down-
ward and upward reserves are respectively multiplied
by the integration of the probability of net demand
(fAnet;t(x)) (i.e., load minus renewable generation out-
put) as follows:

RERC(A)
t =

Dnet(A)
t +

P
i2DG(A)

Rup(A)
i;tZ

Dnet(A)
t0@Dnet(A)

t +
X

i2DG(A)

Rup(A)
i;t � x

1A fAnet;t(x)dx;

REENS(A)
t =

�Dnet(A)
tZ

Dnet(A)
t +

P
i2DG(A)

Rdn(A)
i;t0@x�Dnet(A)

t +
X

i2DG(A)

Rdn(A)
i;t

1A� fAnet;t(x)dx;

Dnet(A)
t = PL(A)

t � PW (A)
t � PPV (A)

t ; (18)

where Dnet(A)
t and Dnet(A)

t are respectively the possible
maximum and minimum net demands, and Dnet(A)

t
is the forecasted net demand during hour t. It
should be noted that the possible scenarios for net
demand are not limited to the well-known probability
distribution functions in the proposed model and it
can follow any ambiguous distributions with known
expectations and variances. Thus, fAnet;t (x) can be
calculated using the available historical data. However,
Eq. (18) is yet di�cult to calculate due to the lack of
exact distribution information as well as nonlinearity of
RERC(A)
t and REENS(A)

t . As it is depicted in Figure 2,
a piecewise linear approximation method [35] is applied
to obtaining the approximate linear form of Eq. (18).
Note that since RERC(A)

t and REENS(A)
t are included

in the objective function (1), the equality constraints
are transformed into inequality ones and rewritten as
follows:
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Figure 2. Piecewise linear approximation of risks.
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t �aERC(A)

l;t

X
i2DG(A)
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i;t +bERC(A)

l;t

REENS(A)
t �aEENS(A)

l;t

X
i2DG(A)

Rup(A)
i;t +bEENS(A)

l;t ;
(19)

where aERC(A)
l;t ; aEENS(A)

l;t ; bERC(A)
l;t , and bEENS(A)

l;t are
constant coe�cients of the piecewise linear approxi-
mation and l is an ordinal number generated during
the piecewise linearization. Taking REENS(A)

t as an
instance, the coe�cients are determined as follows:

aEENS(A)
l;t =

yl;t � yl+1;t

xl;t � xl+1;t
;

bEENS(A)
l;t = �xl;t � aEENS(A)

l;t + yl;t;

yl;t =

�Dnet(A)
tZ

Dnet(A)
t +xl;t

�
x�Dnet(A)

t + xl;t
�

�fAnet;t(x)dx: (20)

Alongside risk costs added to the objective function,
i.e., cos tARisk, the operators may plan to guarantee
a preferred level of result conservativeness. To do
so, Eq. (21) is presented to limit the risks to certain
amounts:

RERC(A)
t � �RERC(A)

t ; REENS(A)
t

� �REENS(A)
t : (21)

2.2.5. Power ow equations and network constraints
In order to model the power ows in both DN and
MGs, the distow model is applied in this paper. As
illustrated by Farivar and Low [36], relaxing the orig-
inal quadratic equality constraints of distow model
to inequality constraints yields a second-order cone
program. Accordingly, Eqs. (22) and (23) provide
the active and reactive power balances at each node
i in each time period t, respectively. Constraint (24)
represents the power ow relation between any two
connected nodes i and j. The conic relaxation of the
branch ow equation is shown in Eq. (25).

P sub(A)
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i;t
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i;t = PL(A)

i;t ; (22)
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i;t � X
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Q(A)
ij;t

+
X

k2RB(i)

�
Q(A)
ik;t � x(A)

ik I(A)
ik;t

�
� biu(A)

i;t = QL(A)
i;t ; (23)

V (A)
i;t =V (A)

j;t � 2
�
r(A)
ij;tP

(A)
ij;t + x(A)

ij;tQ
(A)
ij;t

�
+
��

r(A)
ij;t

�2
+
�
x(A)
ij;t

�2
�
I(A)
ij;t ; (24)

2P (A)
ij;t

2Q(A)
ij;t

V (A)
i;t � I(A)

ij;t


2

� V (A)
i;t + I(A)

ij;t : (25)

In addition to the above power ow equations, the
allowable limits on voltage and thermal capacity of
nodes for each branch are described by Eqs. (26)
and (27), respectively.

v2(A)
i;t � V (A)

i;t � v2(A)
i;t ; (26)

I(A)
i;t � i2(A)

i : (27)

3. Decentralized ATC-based implementation
of the model

In this section, we formulate the coordinated energy
trading model among DN and MGs within the ATC
framework. Traditionally, the ATC method is suitable
for multilevel systems. It decomposes the system into
subsystems hierarchically. Subsystems in the upper
levels are parents and broadcast the design targets to
the lower-level subsystems, named the children. In
order to meet the design targets, children perform con-
secutive optimizations and compute the corresponding
responses. As shown in Figure 1, DN in the upper level
is linked to MGs in the lower level via tie-lines. Since
power ow in a tie-line is determined by controlling
variables at ending terminals of that tie-line, any
decisions made by DN would change the power ow
in the tie-line and a�ect the decision-making process
of MG. Thus, the local optimization problems of both
DN and MGs, presented in Section 2.2, should include
power ow relations corresponding to the tie-lines. To
do so, the node sets of DN and MGs are extended to
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include the boundary nodes of their neighbors. For
example, DN and MGm share their boundary nodes a
and a0 as shown in Figure 3. Consequently, the local
copies of variables associated with the shared nodes aa0,
i.e., S(A)

aa0;t =
h
P (A)
aa0;tQ

(A)
aa0;tV

(A)
a;t V

(A)
a0;t I

(A)
aa0;t

i
should be all

driven to the same values for both neighboring agents.
Except for this vector of coupling variables (S(A)

aa0;t), the
decision variables in the local optimization problems of
both DN and MGs are independent and local.

Solving the local optimization problems of both
DN and MGs separately with no coordination might
yield di�erent values for S(A)

aa0;t. However, this occasion
is physically infeasible and the obtained solution is
impractical. To ensure feasible solution, both DN and
MGs need to achieve an agreement on the values of
coupling variables. In the ATC technique, the coupling
variables are revealed in the form of target variables
and response copiers. The target variables are the
coupling variables (S(DN)

aa0;t ) controlled by DN, and the
response copiers are the coupling variables (S(MGm)

aa0;t )
managed by MGs. Note that the response copiers
are replicates of the target variables. Hence, a set of
consistency constraints (CDN�MGm

aa0;t ) is formulated as:

CDN�MGm
aa0;t : S(DN)

aa0;t � S(MGm)
aa0;t = 0 8t 2 T: (28)

By enforcing Eq. (28) in the local optimization of
DN and MGm, a feasible solution for the coordinated
DN+MGs operation is guaranteed. Then, the con-
sistency constraints are relaxed in the objective func-
tions of both DN and MGs by augmented Lagrangian
penalty functions as follows:

�(DN) =
X

MGm2NMG

X
s2S(DN)

aa0

X
t2T�

�(DN)
aa0;s;t �

�
S(DN)
aa0;s;t � S(MGm)�

aa0;s;t

�
+
!(DN)

aa0;s;t �
�
S(DN)
aa0;s;t � S(MGm)�

aa0;s;t

�2

2

�
; (29)

Figure 3. Interdependency of DN and MGs via coupling
variables.

�(MGm) =
X

s2S(MGm)
aa0

X
t2T�

�(MGm)
aa0;s;t �

�
S(DN)�
aa0;s;t � S(MGm)

aa0;s;t

�
+
!(MGm)

aa0;s;t �
�
S(DN)�
aa0;s;t�S(MGm)

aa0;s;t

�2

2

�
; (30)

where �(DN)
aa0;s;t and !(DN)

aa0;s;t are the Lagrange multi-
plier and the penalty corresponding to the coupling
variable s of shared nodes aa0 at time t, respec-
tively. Traditionally, a hierarchical ATC structure
can be applied to matching up the local optimization
problems. First, the parent (i.e., DN) solves its
local optimization problem and transmits the target
values (S(DN)�

aa0;s;t ) to its children (i.e., MGs). Then,
the responses (S(MGm)�

aa0;s;t ) are determined by solving
the local optimization of MGs and sent back to DN.
The local optimization problems of DN and MGs are
hierarchically linked, while the problems of the MGs
are not connected. However, this hierarchical ATC
structure is a sequential procedure wherein MGs should
wait when DN is solving its problem, and vice versa.
Moreover, any connection/information sharing among
MGs is not allowed in traditional ATC. Therefore, a
non-hierarchical ATC method with parallelization is
proposed in this paper. Instead of transferring target
or response between the upper level and the lower
level, the results of the previous iteration of local
optimization problems are employed in the proposed
model. Therefore, all subproblems can be disconnected
in the current iteration and a sequence of optimizations
is no longer required. To this end, a vector of coupling
variables Z is created that can represent either target
variables or response copies, and it contains the infor-
mation exchanged with other subproblems. In this way,
the target values from the upper level are transformed
to Z(DN);n�1

aa0;s;t and response values from the lower
level are converted to Z(MGm);n�1

aa0;s;t . Consequently, all
subproblems will be in the same level and the values act
as response copies in their penalty functions. However,
the main issue in this procedure is the coordination
of subproblems. Previous studies, e.g., Kargarian et
al. [37], have proposed a central coordinator to provide
each subproblem with target values in an optimal way.
The objective of this central coordinator is to optimally
minimize the summation of penalty functions of all
subproblems. In this paper, similar to the study carried
out by Kargarian et al. [38], the optimization problem
of the central coordinator is distributed among all
subproblems. Then, the distributed problem of the
coordinator and a data exchange linking constraint are
added to each subproblem as a constraint. Therefore,
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each subproblem becomes a bilevel optimization one as
presented in the following abstract formulations:

min
�x(A);Z(A)

aa0;s;t
f (A)(�x(A);n) +

X
aa02B(A)

n

X
s2S(A)

aa0

X
t2T�

�(A);n
aa0;s;t �

�
Z(CA);n�1
aa0;s;t � Z(A);n

aa0;s;t

�
+
!(A);n

aa0;s;t �
�
Z(CA);n�1
aa0;s;t �Z(A);n

aa0;s;t

�2

2

�
; (31)

s.t.:

h(A)
�

�x(A);n; Z(A)
aa0;s;t

�
= 0;

and:

g(A)(�x(A);n; Z(A)
aa0;s;t) � 0; (32)

arg minZ(CA);n�1
aa0;s;t

X
aa02B(A)

n

X
s2S(A)

aa0

X
t2T

I(C)
A

�
�(A);n�1
aa0;s;t �

�
Z(CA);n�1
aa0;s;t � Z(A);n�1

aa0;s;t

�
+
!(A);n�1

aa0;s;t �
�
Z(CA);n�1
aa0;s;t �Z(A);n�1

aa0;s;t

�2

2

�
; (33)

I(C)
A � Z(CA);n�1

aa0;s;t =I(C)
A � Z(CA0 );n�1

aa0;s;t (A 6= A0); (34)

where �x(A) represents the local decision variables as-
sociated with subproblem A; Z(A);n

aa0;s;t is the coupling
variable s of shared nodes aa0 at time t in iteration
n; f (A)(�x(A)) denotes the local operation cost of
subproblem A (i.e., cos tATot); h(A) and g(A) are abstract
representations of equality and inequality constraints
of subproblem A, respectively; Z(CA);n�1

aa0;s;t is the coor-
dinated value of coupling variable s of shared nodes
aa0 determined in the lower-level problem (i.e., the
problem of the follower) at time t in iteration n � 1;
I(C)
A is a binary incidence matrix that chooses the

coordinated value of coupling variables of other agents
associated with subproblem A; and Z(CA0 );n�1

aa0;s;t is the
coordinated value of coupling variable s of neighboring
agent A0 determined at time t in iteration n � 1.
Constraint (34) demonstrates that agent A has access

only to the coupling variables of its direct neighbors
A0. Consequently, the privacy of information is met in
each subproblem.

In order to transform the above bilevel optimiza-
tion problem to a single-level model, the Karush-Kuhn-
Tucker (KKT) conditions are applied to the lower-level
problem (Eqs. (33) and (34)) and then, these conditions
are implemented in the constraints of the upper level.

Without loss of generality, we only consider ex-
changing a coupling variable s between DN and MGm
at time t. Thus, the lower-level problem (33) contains
two penalty terms associated with the coupling variable
s shared by DN and MGm at time t, which can be
formulated as follows:

�(c)
s;t =

�
�(DN);n�1
aa0;s;t � �Z(CDN );n�1

aa0;s;t � Z(DN);n�1
aa0;s;t

�
+
!(DN);n�1

aa0;s;t � �Z(CDN );n�1
aa0;s;t � Z(DN);n�1

aa0;s;t

�2

2

�
+
�
�(MGm);n�1
aa0;s;t ��Z(CMGm );n�1

aa0;s;t �Z(MGm);n�1
aa0;s;t

�
+
!(MGm);n�1

aa0;s;t �
�
Z(CMGm );n�1
aa0;s;t

� Z(MGm);n�1
aa0;s;t

�2

2

�
: (35)

Based on the lower-level constraint (34), we have
Z(CDN );n�1
aa0;s;t = Z(CMGm );n�1

aa0;s;t . Therefore, by replac-
ing Z(CMGm );n�1

aa0;s;t with Z(CDN );n�1
aa0;s;t and taking partial

derivative of �(c)
s;t with respect to Z(CDN );n�1

aa0;s;t , we have:

@�(c)
s;t

�
@Z(CDN );n�1

aa0;s;t = �(DN);n�1
aa0;s;t + 2!(DN);n�1

aa0;s;t

Z(DN);n�1
aa0;s;t � 2!(DN);n�1

aa0;s;t Z(DN);n�1
aa0;s;t

+ �(MGm);n�1
aa0;s;t + 2!(MGm);n�1

aa0;s;t Z(CDN );n�1
aa0;s;t

� 2!(MGm);n�1
aa0;s;t Z(MGm);n�1

aa0;s;t = 0: (36)

Thus, Z(CDN );n�1
aa0;s;t can be calculated by Eq. (37) as

shown in Box II. Z(CMGm );n�1
aa0;s;t is also calculated in the

same way.

Z(CDN );n�1
aa0;s;t =

2!(DN);n�1
aa0;s;t Z(DN);n�1

aa0;s;t + 2!(MGm);n�1
aa0;s;t Z(MGm);n�1

aa0;s;t � �(DN);n�1
aa0;s;t � �(MGm);n�1

aa0;s;t

2!(DN);n�1
aa0;s;t + 2!(MGm);n�1

aa0;s;t
: (37)

Box II
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Now, the lower-level optimization problem, i.e.,
Eqs. (33) and (34), can be replaced with its KKT
conditions in the upper-level problem and the resulting
formulation for subproblem A can be rewritten as
follows:

min
�x(A);Z(A)

aa0;s;t
f (A)(�x(A);n) +

X
aa02B(A)

n

X
s2S(A)

aa0

X
t2T�

�(A);n
aa0;s;t �

�
Z(CA);n�1
aa0;s;t � Z(A);n

aa0;s;t

�
+
!(A);n

aa0;s;t�
�
Z(CA);n�1
aa0;s;t �Z(A);n

aa0;s;t

�2

2

�
; (38)

s.t.:

h(A)
�
�x(A);n; Z(A)

aa0;s;t

�
=0; g(A)

�
�x(A);n; Z(A)

aa0;s;t

��0: (39)

Eq. (40) is shown in Box III.
In iteration n, subproblem A relies on its lo-

cal information �x(A);n as well as Z(CA);n�1
aa0;s;t , wherein

Z(CA);n�1
aa0;s;t is determined via coupling variables between

this agent and its direct neighboring agents in iteration
n � 1. Also, the Lagrange multiplier �(A);n

aa0;s;t and the
penalty !(A);n

aa0;s;t are updated as:

�(A);n
aa0;s;t =�(A);n�1

aa0;s;t + 2
�
!(A);n�1
aa0;s;t

�2

�
Z(CA);n�1
aa0;s;t � Z(A);n�1

aa0;s;t

�
; (41)

!(A);n
aa0;s;t =  � !(A);n�1

aa0;s;t ; (42)

where  � 1 is necessary for improving the convergence
performance. We recommend a value close to 1 for
most cases. As in iteration n, each subproblem requires
the values of the coupling variables in its connected
neighbors in iteration n� 1 so that both DN and MGs
problems can be solved in a decentralized and parallel
manner in iteration n. Also, the convergence of the
whole network is determined based on the consistency
between the current pair of target and response values
as formulated in Eq. (43):

C(A);n
aa0;t = Z(CA);n

aa0;t � Z(A);n
aa0;t : (43)

To summarize, the parallel solution procedure based

Figure 4. Flowchart of the proposed non-hierarchical
ATC.

on the proposed non-hierarchical ATC model is pre-
sented by the following algorithm. Also, the owchart
associated with the proposed procedure is depicted in
Figure 4.

Step 1. Set the iteration index n = 1; select initial
values for �(A);1

aa0;s;t, !
(A);1
aa0;s;t, and Z(CA);0

aa0;s;t ; and set  and
the convergence tolerances " > 0;
Step 2. Solve the local optimization problems (38)-
(40) for both DN and MGs in parallel and determine
the optimal value for the coupling variables Z(A);n

aa0;s;t;
Step 3. Exchange the vector of coupling variable pair
(Z(DN);n

aa0;t , Z(MGm);n
aa0;t ), Lagrange multipliers �(A);1

aa0;s;t,
and penalty !(A);1

aa0;s;t among neighboring agents;
Step 4. Compute the vector of consistency between
the current pair of target and response values. IfC(A);n

aa0;t


max

� ", the procedure stops and the
optimal decision variables are obtained; otherwise, go
to Step 5;
Step 5. Update the Lagrange multipliers and
penalty weights using Eqs. (41) and (42), respec-
tively;
Step 6. Set n = n+ 1 and go to Step 2.

Z(CA);n�1
aa0;s;t =

2!(A);n�1
aa0;s;t Z(A);n�1

aa0;s;t + 2!(A0);n�1
aa0;s;t Z(A0);n�1

aa0;s;t � �(A);n�1
aa0;s;t � �(A0);n�1

aa0;s;t

2!(A);n�1
aa0;s;t + 2!(A0);n�1

aa0;s;t
8A0 2 N (A): (40)

Box III
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Figure 5. Modi�ed IEEE 33-bus test system with two MGs.

Table 1. CDGs data for both DN and MGs.

CDG PDGi;t
(kW)

�PDGi;t
(kW)

aDGi;t
($/kWh2)

bDGi;t
($/kWh2)

cDGi;t
($/h)

Crupi;t
($/kWh)

Crdni;t
($/kWh)

DN
CDG1 100 2000 0.0001 0.27 0 0.060 0.060
CDG2 100 2000 0.0004 0.40 0 0.050 0.050
CDG3 100 2000 0.0003 0.55 0 0.040 0.040

MG1 and MG2
CDG1 60 1000 0.0004 0.47 0 0.077 0.077
CDG2 40 700 0.0006 0.58 0 0.044 0.044

Table 2. The data of energy storage systems.

PSCi;t (kW) ESi;t(kWh) �ESi;t(kWh) CSCi;t ($/kWh) CSDi;t ($/kWh) �SC(A)
i;t =�SD(A)

i;t

MG1 and MG2 40 100 400 0.4 0.6 0.96

4. Simulation results

The proposed ATC-based decentralized energy trading
algorithm is applied to the modi�ed IEEE 33-bus
system [39]. The computations for all tests are con-
ducted using YALMIP toolbox [40] and ILOG CPLEX
12.5 s [41] MIQCP solver on a 2.30-GHz intel Core i5
CPU personal computer with 4 GB of RAM memory.

The modi�ed IEEE 33-bus test system has 3
CDGs, one wind unit, and one PV, as shown in
Figure 5. In addition, the system is comprised of two
MGs named MG1 and MG2, which are respectively
connected to the DN through nodes 11 and 28. Both
MG1 and MG2 are identical and 9-bus systems with

2 CDGs, one wind unit, one PV, and one ESS. The
data for the CDGs and ESSs are given in Tables 1 and
2, respectively. Daily load pro�le, wholesale energy
market price, and the forecast production of both wind
and PV units for DN and MGs are shown in Figure 6.
�REENSt and �RERCt for DN and MGs are 10% of the
total demand and renewable generation in each time
interval, respectively. Moreover, the associated costs
of EENS and ERC are respectively set to 5 times and
2 times the wholesale energy price at each hour. The
initial values for all coupling variables and Lagrange
multiplier variables are set to zero and the values of
the penalty weights are initialized with the value of
1. Also,  = 1:05 and the convergence threshold is
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Figure 6. Daily load pro�le, renewable generation forecast, and wholesale market price of the system.

" = 0:001. Voltage of substation node is set to 1 p.u.
and voltages of other nodes are constrained to 0.9 p.u.
up to 1.1 p.u..

Based on the above information, the proposed
model is preformed and the obtained results are de-
scribed in the following. The daily resource scheduling
for DN, MG1, and MG2 is shown in Figure 7. As
it can be seen, all CDGs in DN, MG1, and MG2
are committed throughout the operating horizon given
either their low operating cost or up/down reserve for
dealing with real-time uncertainties. Since the whole-
sale energy price is relatively lower than operating cost
of the CDGs, DN decides to import power from the
main grid and sell a portion of it to MG1 and MG2
during hours 1-6 and 18-24. For the rest of the day,
MG1 and MG2 export their energy surplus to DN.
As a result, both DN and MGs, besides meeting their
local demands, optimally provide part of the required
demand of each other through the tie-lines. Moreover,
both ESS1 and ESS2 are being charged during o�-
peak hours and deliver their stored energy to MGs
when the demand is high. It should be noted that the
charging of ESS1 and ESS2 at hours 23 and 24 is due

to their state of charge limitations. By comparing the
total local generation with total local demand as well as
the imported/exported power in Figure 7, it is clearly
evident that the power balance in the proposed model
is accurately guaranteed throughout the operating day.
It is worth mentioning although CDGs in both DN and
MGs can provide more power, their remaining capac-
ities are considered as reserves to manage uncertainty
of renewables and demand in real time.

In order to validate e�ciency and optimality
of the proposed method, the test case results are
compared with the solutions of centralized and hier-
archical approaches via identical parameters. Note
that in the case of the centralized approach, the whole
information is available to a central operator, which
solves the scheduling problem for both DN and MGs.
Recall that the centralized approach is questionable
for implementation in the future distribution networks
due to many reasons described in Section 1 and this
comparison is only to validate the optimality of the
results obtained by the proposed method. According
to Table 3, both hierarchical ATC and the proposed
non-hierarchical ATC methods can converge to the

Table 3. Comparison of centralized and decentralized approaches.

Method Centralized Hierarchical ATC Non-hierarchical ATC

Total generation cost ($)
DN 25068.502 25066.119 25061.257
MG1 4996.0898 4995.986 4998.547
MG2 5387.2414 5388.599 5390.470

Total reserve cost ($)
DN 5422.854 5422.620 5422.143
MG1 947.468 947.462 947.680
MG2 953.734 953.705 953.654

Total risk cost ($)
DN 618.925 619.260 619.981
MG1 160.800 160.827 160.479
MG2 138.772 138.772 138.795

Total operation cost ($) System-wide 43694.39 43693.35 43693.006
(gap 0.023%) (gap 0.031%)
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Figure 7. Daily scheduling: (a) and (b) DN; (c) and (d) MG1; and (e) and (f) MG2.

optimal solution since their objective values are slightly
di�erent from the centralized one.

To demonstrate the superiorities of the proposed
non-hierarchical model over the hierarchical ATC, the
convergence criterion, i.e.:C(A);n

aa0;t


max

is depicted in Figure 8. As it can be seen, the hierarchi-
cal ATC method converges after 109 iterations, while
the proposed method �nds the optimal solution after 75

iterations. It is worth noting that the hierarchical ATC
is a sequential approach, while the proposed method is
a parallel one. Thus, the proposed method requires
much less computing time with fewer iterations.

Also, we consider random attacks on the coupling
values received from MGs in iterations 32-37. As it
is shown in Figure 8, the proposed method converges
after 75 iterations, which is the same as the base case
with no attack. Therefore, the proposed algorithm is
reasonably resistant to cyber-attacks and provides the
optimal solution.
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Figure 8. Convergence criterion.

Finally, an analysis based on Monte Carlo sim-
ulation was performed to examine robustness of the
solution obtained by the proposed method in deal-
ing with the real-time uncertainties. The day-ahead
scheduling solutions were evaluated via 1000 scenar-
ios representing di�erent realizations of net demand
uncertainty. The results are studied in 4 aspects,
namely insecure scenarios, EENS, ERC, and Expected
Dispatch Cost (EDC). Insecure scenarios represent
those in which the given solutions fail to satisfy the
operational security constraints in at least one time-
interval. In this study, the security of the system has
been compromised in only 7 scenarios. In other scenar-
ios, CDGs have successfully responded to the real-time
uncertainties. In addition, EENS and ERC are 0.003
kWh and 1.01 kWh, respectively, which are very trivial
in comparison with the total net demand of the entire
network. The EDC of the whole network is $41496.73.
This value is almost close to the total operation cost
(generation cost plus reserve cost) given in Table 3 and
shows economic e�ciency of the solution.

5. Conclusions

The objective of this paper was to develop a fully
decentralized decision making algorithm for collabora-
tive scheduling of ADN with MMGs. The proposed
algorithm was based on ATC technique in which the
scheduling optimization problem of DN was located in
the upper level of the hierarchy, while the local opti-
mization problems of MGs were considered in the lower
level. To provide a fully parallelized solution procedure,
a non-hierarchical ATC algorithm having no central
coordinator was developed. The proposed model was
an MISOCP problem that considered the exact model
of MGs network using the AC optimal power ow, while
only limited information was exchanged with DN. The
case studies of a modi�ed IEEE 33-bus distribution test
system showed the accuracy and convergence of the
proposed method. Although both hierarchical and the
proposed non-hierarchical ATC algorithms provided
reasonable outcomes, the proposed method generally

converged in a lower number of iterations and required
much less time thanks to parallelization. In addition,
the results demonstrated that the proposed algorithm
was potentially resistant to cyber-attacks. Also, the
proposed procedure solutions could well guarantee
security of the system against multiple source-load
uncertainties.
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Nomenclature

Sets and indices

n Index of iterations
a; a0 Indices of border nodes
i; j; k Indices of nodes
t; h Indices of time/hour
s Index of coupling variables
m Index of MGs
A Index of agents
T Set of time intervals
Sub(DN) Set of substations connecting DN to

the main grid
DG(A) Set of CDGs in agent A
ESS(A) Set of ESSs in agent A

B(A)
n Set of border nodes of agent A

SSS(A)
aa0 Set of coupling variables of border

nodes aa0 shared by agent A

N (MG) Set of MGs
N (A) Set of neighboring agents of agent A

Parameters

CSubi;t Energy price of purchasing power from
the main grid

aDGi;t ; b
DG
i;t ; c

DG
i;t Cost coe�cients of power generation

by a CDG

Crupi;t=Cr
dn
i;t Up/down scheduled reserve cost of a

CDG
CSCi;t =C

SD
i;t Charging/discharging cost of an ESS

CERCt Cost of expected renewable energy
curtailment

CEENSt Cost of expected energy not supplied

PDGi =PDGi Minimum/maximum active power
output of a CDG
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QDG(c)
i = �QDGi Minimum/maximum reactive power

limit of a CDG
�SDGi Maximum apparent power output of a

CDG

Rupi =R
dn
i Maximum up/down scheduled reserve

of a CDG
RUDGi =RDDG

i Maximum up/down ramp rate of a
CDG

DTi=UTi Minimum down/up time of a CGD

TON
i =TOFF

i The number of initial periods during
which a CDG must be on/o�

�T Duration of time interval

PSCi; =P
SD
i Maximum charging/discharging power

of an ESS
�SCi =�SDi;t Charging/discharging e�ciency of an

ESS

ESi =E
S
i Maximum/minimum of stored energy

in an ESS
Dnet(A)
t Expected net demand in time t by

agent A

Dnet(A)
t Minimum net demand in time t by

agent A
�Dnet(A)
t Maximum net demand in time t by

agent A

fAnet;t(x) Probability of net demand in time t for
agent A

PLi;t=Q
L
i;t Forecasted active/reactive demand at

node i in time t
PWi;t Forecasted wind power generation at

node i in time t
PPVi;t Forecasted PV generation at node i in

time t
�REENS(A)
t Maximum allowable EENS in time t

for agent A
�RRC(A)
t Maximum allowable ERC in time t for

agent A
rij=xij Resistance/reactance of line ij
gi=bi Conductance/suseptance of node

ii Minimum current of node
vi=vi Minimum/maximum voltage of node
 Tuning parameter

�(A);n
aa0;s;t=!

(A);n
aa0;s;t Lagrange multiplier/penalty weight

associated with the coupling variable
s of shared nodes aa0 in time t in
iteration n

Z(CA);n�1
aa0;s;t Coordinated value of the coupling

variable s of agent A determined in
time t in iteration n� 1

Variables

PDG(A)
i;t =QDG(A)

i;t Active/reactive power output of a
CDG

Rup(A)
i;t =Rdn(A)

i;t Up/down scheduled reserve of a CDG

PSC(A)
i;t =PSD(A)

i;t Charging/discharging power of an ESS

PSub(DN)
i;t =
QSub(DN)
i;t

Active/reactive power transmitted
through substation

RERC(A)
t ERC in time t for agent A

REENS(A)
t EENS in time t for agent A

ES(A)
i;t Energy stored in an ESS

uDG(A)
i;t Binary variable indicating the status of

a CDG
uSC(A)
i;t =uSD(A)

i;t Binary variable indicating
charging/discharging status of an
ESS

P (A)
ij;t =Q

(A)
ij;t Active/reactive power of line ij in time

t for agent A

V (A)
i;t Squared voltage magnitude of node i

in time t for agent A

I(A)
ik;t Squared current of line ij in time t for

agent A

Z(A);n
aa0;s;t Coupling variable s of shared nodes

aa0 in time t in iteration n
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