Experimental evaluation of shape factor of axis-symmetric sunken structures

Document Type : Article


Department of Mechanical Engineering, Jaypee University of Engineering & Technology, A.B. Road, Guna-473226, Madhya Pradesh, India


This paper presents the dependence of a shape factor for the fully sunken axis symmetrical structures (viz. cubical, square prismatic, pyramidal, and cylindrical) corresponding to the depth and their orientation. Experimental evaluations of the shape factor on reduce scale models are carried out in laboratory using thermal simulation method for different sets of conditions. The method has been used to determine shape factor, which can be used to determine heat loss from ground to structure or structure to groud fully sunken with the different orientation. Maximum and minimum value of shape factor for set-I and II condition are recoded as 90.18 and 9.93 respectively. In set –III it will varies from 16.49 to 35.28. At D/L=2 shape factor of set-VI leads by 17.26% as compared to set VII. Where as set- IX leads by 33.47% as compaired to set VIII. It would help for designing building structure of fully buried nature for creating thermal comfort.


Main Subjects

1. Shelton, J.A.Y. Underground storage of heat in  solar heating systems", Solar Energy, 17, pp. 137{  143(1975).  2. Mishra, D.R. and Tiwari, A.K. Sunken e_ect on  building structures", I-Manager's Journal on Mechanical  Engineering, 2, pp. 41{45 (2008).  3. Givoni, B. Underground long term storage of solar  energy-An overview", Solar Energy, 19, pp. 617{623  (1977).  4. Patil, K., Srivastava, V., and Baqersad, J. A multiview  optical technique to obtain mode shapes of structures",  Measurement: Journal of the International  Measurement Confederation, 122, pp. 358{367 (2018).  5. Deshmukh, M.K., Sodha, M.S., and Sawhney R.L.  E_ect of depth of sinking on thermal performance of  partially underground building", International Journal  of Energy Research, 15, pp. 391{403 (1991).  6. Martinopoulos, G., Solar energy in buildings:  Reference module in earth systems and environmental  sciences, Elsevier Inc., pp. 1{14 (2016).  https://doi.org/10.1016/B978-0-12-409548-9.09731-1  7. Sodha, M.S., Sawhney, R.L., and Jayashankar, B.C.  Estimation of steady state ground losses from earth  coupled structures by simulation", International Journal  of Energy Research, 14, pp. 563{571 (1990).  8. Mishra, D.R., Sodha, M.S., and Tiwari, A.K. Validation  of the basis of experimental simulation of heat  transfer between a building and surrounding earth",  SESI Journal, 21, pp. 36{48 (2013).  9. Sodha, M.S. Simulation of periodic heat transfer  between ground and underground structures", International  Journal of Energy Research, 25, pp. 689{693  (2001).  10. Sodha, M.S. Simulation of dynamic heat transfer  between ground and underground structures", International  Journal of Energy Research, 25, pp. 1391{  1394 (2001).  11. Sol_e, A., Falcoz, Q., Cabeza, L.F., and Neveu, P.  Geometry optimization of a heat storage system for  concentrated solar power plants (CSP)", Renewable  Energy, 123, pp. e95 (2018).  12. Waichita, S., Jongpradist, P., and Jamsawang, P.  Characterization of deep cement mixing wall behavior  using wall-to-excavation shape factor", Tunnelling  and Underground Space Technology, 83, pp. 243{253  (2019).  13. Sukkarak, R., Jongpradist, P., and Pramthawee, P.  A modi_ed valley shape factor for the estimation of  rock_ll dam settlement", Computers and Geotechnics,  108, pp. 244{256 (2019).  14. Sodha, M.S. and Mishra, D.R. Shape factor for  bermed wall", Heat Mass Transf. Und Sto_uebertragung,  47, pp. 1143{1146 (2011).  15. Tong, G., Christopher, D.M., and Zhang, G. New  insights on span selection for Chinese solar greenhouses  D.R. Mishra/Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 2831{2837 2837  using CFD analyses", Computers and Electronics in  Agriculture, 149, pp. 3{15 (2017).  16. Somwanshi, A., Dixit, A., and Tiwari, A.K. Shape  factor for steady state heat transfer between swimming  pool water and wsurrounding ground", Fundamentals  of Renewable Energy and Applications, 4, pp. 2{5  (2013).  17. El-samadony, Y.A.F.A.F., El-maghlany, W.M. and  Kabeel, A.E.E. Inuence of glass cover inclination  angle on radiation heat transfer rate within stepped  solar still", DES, 384, pp. 68{77 (2016).  18. Ruivo, C.R. and Vaz, D.C. Prediction of the heat  gain of external walls: An innovative approach for fullfeatured  excitations based on the simpli_ed method of  Mackey-and-Wright", Applied Energy, 155, pp. 378{  392 (2015).  19. Amarasinghe Vithanage D., Devi_zis, A., Abramavi  _cius, V., Infahsaeng, Y., Abramavi_cius, D.,  MacKenzie, R.C.I., Keivanidis, P.E., Yartsev, A.,  Hertel, D., Nelson, J., Sundstrvm, V., and Gulbinas, V.  Visualizing charge separation in bulk heterojunction  organic solar cells", Nature Communications, 4, pp.  23{34 (2013).  20. Boulton, C., Dedekorkut-Howes, A., and Byrne, J.  Factors shaping urban greenspace provision: A systematic  review of the literature", Landscape and Urban  Planning, 178, pp. 82{101 (2018).  21. Kiwan, S. and Khammash, A.L. Investigations into  the spiral distribution of the heliostat _eld in solar  central tower system", Solar Energy, 164, pp. 25{37  (2018).  22. Chel, A., Tiwari, G.N., and Singh, H.N. A modi_ed  model for estimation of daylight factor for skylight  integrated with dome roof structure of mud-house in  New Delhi (India)", Applied Energy, 87, pp. 3037{3050  (2010).