References
1. Khateb, F. Bulk-driven oating-gate and bulk-driven quasi- oating-gate techniques for low-voltage lowpower
analog circuits design", Int. J. Electron. Commun. (AEU), 68(1), pp. 64{72 (2014).
2. Kulej, T. and Khateb, F. Bulk-driven adaptively biased OTA in 0.18 m CMOS", Electron. Lett., 51(6), pp. 458{460 (2015).
3. Rezaei, F. and Azhari, S.J. Ultra low voltage, high performance operational transconductance ampli er
and its application in a tunable Gm-C lter", Microelectronics Journal, 42, pp. 827{836 (2011).
4. Khateb, F., Khatib, N., Koton, J., et al. Quadrature oscillator based on novel low-voltage ultra-low-power
quasi- oating-gate DVCC", Scientia Iranica, 25(6), pp. 3477{3489 (2018). DOI: 10.24200/SCI.2017.4377
5. Grasso, A.D., Pennisi, S., Scotti, G., et al. .9-V class-AB miller OTA in 0.35-m CMOS with thresholdlowered
non-tailed di erential pair", IEEE Trans. Circuits
Syst. I, 64(7), pp. 1740{1747 (2017).
6. Chatterjee, S., Tsividis, Y., and Kinget, P. .5-
V analog circuit techniques and their application in
OTA and lter design", IEEE J. Solid-State Circuits,
40(12), pp. 2373{2387 (2005).
7. Kulej, T. .5-V bulk-driven CMOS operational ampli
er", IET Circuits Devices Syst., 7(6), pp. 352{360
(2013).
8. Rezaei, F. and Azhari, S.J. Transconductor linearization
based on adaptive biasing of source-degenerative
MOS transistors", Circuits Syst Signal Process, 34, pp.
1149{1165 (2015).
9. Rezaei, F. and Azhari, S.J. A new controllable adaptive
biasing linearization technique for a CMOS OTA
and its application to tunable Gm-C lter design",
Microelectronics Journal, 46, pp. 810{818 (2015).
10. Meghdadi, M. and Sharif Bakhtiar, M. Minimum
power Miller-compensated CMOS operational ampli-
ers", Scientia Iranica, 21(6), pp. 2243{2249 (2014).
11. Azcona, C., Calvo, B., Celma, S., et al. Low-voltage
low-power CMOS rail-to-rail voltage-to-current converters",
IEEE Trans. Circuits Syst. I, 60(9), pp.
2333{2342 (2013).
12. Abdelfattah, O., Roberts, G.W., Shih, I., et al. An
ultra-low-voltage CMOS process-insensitive self-biased
OTA with rail-to-rail input range", IEEE Trans. Circuits
Syst. I, 62(10), pp. 2380{2390 (2015).
13. Ferreira, L.H.C., Pimenta, T.C., and Moreno, R.L.
An ultra-lows-voltage ultra-low-power CMOS miller
OTA with rail-to-rail input/output wing", IEEE
Trans. Circuits Syst. II, 54(10), pp. 843{847 (2007).
14. Ferreira, L.H.C. and Sonkusale, S.R. A 60-dB gain
OTA operating at 0.25-V power supply in 130-nm
digital CMOS process", IEEE Trans. Circuits Syst. I,
61(6), pp. 1609{1617 (2014).
15. Khateb, F., Kulej, T., and Vlassis, S. Extremely lowvoltage
bulk-driven tunable transconductor", Circuits
Syst Signal Process, 36(2), pp. 511{524 (2017).
16. Kumngern, M. and Khateb, F. .5 V fully di erential
current conveyor using bulk-driven quasi-
oating-gate
technique", IET Circuits Devices Syst., 10(1), pp. 78{
86 (2016).
17. Mobarak, M., Onabajo, M., Martinez, J.S., et
al. Attenuation-predistortion linearization of CMOS
OTAs with digital correction of process variations
in OTA-C lter applications", IEEE J. Solid-State
Circuits, 45(2), pp. 351{367 (2010).
18. Rezaei, F. and Azhari, S.J. Ultra low-voltage, rail-torail
input/output stage operational transconductance
ampli er (OTA) with high linearity and its application
in a Gm-C lter", 11th Int'l Symposium on Quality
Electronic Design (ISQED), pp. 231{236 (2010).
19. Tsividis, Y. and Mcandrew, C., Operation and Modeling
of the MOS Transistor, 3th Edn., Oxford University
Press, New York, USA (2011).