Numerical investigation of the mechanical performance of Thoracic Aortic Aneurysm (TAA) NiTi stent

Document Type : Article

Authors

Department of Materials Engineering, Faculty of Engineering, Arak University, Arak, P.O. Box 38156-88349, Iran.

Abstract

Nowadays, Superelastic NiTi stent is used in Thoracic Aortic Aneurysm (TAA) because of its effects on minimizing such problems as low twistability, unsuitable dynamic behavior, and the shortage of radial mechanical strength. In our simulations, NiTi superelasticity is modeled based on Auricchio theory and Tanaka, Liang and Rogers theory. Auricchio Model show more consistency with the experimental data than Tanaka and Liang and Rogers Models. In the present study, a Finite Element Analysis (FEA) was used to evaluate the impacts of the applied strain on the superelastic behavior of the new geometry designed for Z-shaped TAA NiTi wire stent, for which axial strain (crushing) and radial strain (crimping) force are applied. The results showed that NiTi stent with 50% crimping and 90% crushing displayed the highest mechanical performance owing to suitable Chronic Outward Force(COF), appropriate Radial Resistive Force(RRF), complete mechanical hysteresis loop pertaining to superelastic behavior, and the lower stress and higher strain on the internal curvature of the NiTi stent. Finally, this FEM model can provide a convenient way for evaluating the biomechanical properties of TAA stents given the influences of strain applied.

Keywords

Main Subjects


1. Duerig, T., Tolomeo, D., and Wholey, M. An overview of superelastic stent design", Min Invas Ther and Allied Technol, 9(3/4), pp. 235{246 (2000). 2. Stoeckel, D., Pelton, A.R., and Duerig, T. Selfexpanding Nitinol stents: material and design considerations", Eur Radiol, 14, pp. 292{301 (2004). 3. Matsui, S.O., Terayama, N., and Kobayashi, S. Clinical application of a curved nitinol stent-graft for thoracic aortic aneurysms", Endovc Ther, 10, pp. 20{ 28 (2003). 4. Davies, J.E. Endovascular repair of descending thoracic aortic aneurysm: review of literature thoracic", Cardiovc Surg, 21, pp. 341{346 (2009). 5. Canic, S., Ravi-Chandar, K., and Krajcer, Z. Mathematical model analysis of wall stent and AneuRx - dynamic responses of bare-metal endoprosthesis compared with those of stent-graft", Tex Heart. I. J, 32, pp. 502{506 (2005). 6. Patrick, B., Snowhill, B., John, L., Randall, L., and Frederick, H. Characterization of radial forces in Z F. Nematzadeh and H. Mostaan/Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 2382{2390 2389 stents", Investigative Radiology, 36(9), pp. 521{530 (2001). 7. Whitcher, F.D. Simulation of in vivo loading conditions of Nitinol vascular stent structures", Comput. Struct, 64(5{6), pp. 1005{1011 (1997). 8. Petrini, L., Migliavacca, F., Massarotti, P., Schievano, S., Dubini, G., and Auricchio, F. Computational studies of shape memory alloy behavior in biomedical applications", J. Biomech. Eng, 127, pp. 716{725 (2005). 9. Kleinstreuer, C., Li, Z., Basciano, C., Seelecke, S., and Farber, M. Computational mechanics of Nitinol stent grafts", J. Biomech, 41, pp. 2370{2378 (2008). 10. Beule, M., Cauter, S., Mortier, P., Loo, D., Impec, R., Verdonck, P., and Verhegghe, B. Virtual optimization of self-expandable braided wire stents", Med. Eng, 31, pp. 448{453 (2009). 11. Silber, G., Alizadeh, M., and Aghajani, A. Finite element analysis for the design of self-expandable Nitinol stent in an artery", Int. J. Energy. Tech, 2(19), pp. 1{7 (2010). 12. Merwe, H.V.D., Reddy, B.D., and Zilla, P. A computational study of knitted Nitinol meshes for their prospective use as external vein reinforcement", J. Biomech, 41, pp. 1302{1309 (2008). 13. Fortier, A., Gullapalli, V., and Mirshams, R. Review of biomechanical studies of arteries and their e_ect on stent performance", IJC Heart & Vessels, 4, pp. 12{18 (2014). 14. Auricchio, F., Conti, M., Morganti, S., and Reali, A. Simulation of transcatheter aortic valve implantation: a patient-speci_c _nite element approach", Comput Methods Biomech Biomed Engin, 17(12), pp. 1347{ 1357 (2014). 15. Pauck, R.G. and Reddy, B.D. Computational analysis of the radial mechanical performance of poly-L-lactic acid (PLLA) coronary artery stents", Med. Eng & Phy, 37, pp. 7{12 (2015). 16. Jung, T. and Kim, J.Y. Finite element structural analysis of self-expandable stent deployment in a curved stenotic artery", J. Mech. Sci and Tech, 30(7), pp. 3143{3149 (2016). 17. Guerchais, R., Scalet, G., Constantinescu, A., and Auricchio, F. Micromechanical modeling for the probabilistic failure prediction of stents in high-cycle fatigue", J. Fatigue, 87, pp. 405{417 (2016). 18. Bresslo_, N.W., Ragkousis, G., and Curzen, N. Design optimisation of coronary artery stent systems", An. Biomed. Eng., 44, pp. 357{367 (2016). 19. Altnji, H., Bou-Sa_d, B., and Walter, H. Morphological and stent design risk factors to prevent migration phenomena for a thoracic aneurysm: A numerical analysis", Med. Eng. Phys, 37, pp. 23{33 (2015) 20. Nathan, A., Kobayashi, T., and Giri, J. Nitinol selfexpanding stents for the super_cial femoral artery", Interv. Card. Clin, 6, pp. 227{233 (2017). 21. Wang, R., Zuo, H., Yang, Y.M., and Yang, B. Finite element simulation and optimization of radial resistive force for shape memory alloy vertebral body stent", J. Intel. Mater. Sys. Struct, 28(15), pp. 2140{2150 (2017). 22. Maleckis, K., Anttila, E., Aylward, P., and Poulson, W. Nitinol stents in the femoropopliteal artery: A mechanical perspective on material, design, and performance", Ann. Biomed. Eng, 46(5), pp. 684{704 (2018). 23. Migliavacca, F., Petrini, L., Massarotti, P., Schievano, S., Auricchio, F., and Dubini, G. Stainless and shape memory alloy coronary stents, a computational study on the interaction with the vascular wall", Biomech. Model. Mechanobiol, 2(4), pp. 205{217 (2004). 24. Terriault, P., Brailovski, V., and Gallo, R. Finite element modeling of a progressively expanding shape memory stent", J. Biomech, 39(15), pp. 2837{44 (2006). 25. Auricchio, F., Conti, M., Beule, M., Santis, G., and Verhegghe, B. Carotid artery stenting simulation: From patient-speci_c images to _nite element analysis", Med. Eng. Phys, 33, pp. 281{289 (2011). 26. Lorenzo, V., D__az-Lantada, A., and Lafont, P. Physical ageing of a PU-based shape memory polymer: Inuence on their applicability to the development of TAA devices", Mater & Des, 30, pp. 2431{2434 (2009). 27. Elaraby, A. and Moratal, D. A generalized entropybased two-phase threshold algorithm for noisy medical image edge detection", Sci. Iranica, D, 24(6), pp. 3247{3256 (2017). 28. Zendehbudi, G.R. E_ects of non-uniform wall properties on stress distribution in an abdominal aortic aneurysm, considering nonlinear constitutive equations", Sci. Iranica, B, 21(3), pp. 620{627 (2014). 29. Nematzadeh, F. and Sadrnezhaad, S.K. E_ects of material properties on mechanical performance of Nitinol stent designed for femoral artery: Finite element analysis", Scientia Iranica, 19, pp. 1564{1571 (2012). 30. Liu, X., Wang, Y., Yang, D., and Qi, M. The e_ect of ageing treatment on shape-setting and superelasticity of a Nitinol stent", Mater. Charact., 59, pp. 402{406 (2008). 31. Lubliner, J. and Auricchio, F. Generalized plasticity and shape memory alloy", Int. J. Solids and Struct, 33, pp. 991{003 (1996). 32. Auricchio, F. and Taylor, R. Shape-memory alloys: modeling and numerical simulations of the _nite-strain super elastic behavior", Compu. Meth. Appl. Mech. Eng, 143, pp. 175{94 (1996). 33. Auricchio, F. and Taylor, R. Shape-memory alloys: Modeling and numerical simulations of the _nite-strain superelastic behavior", Compu. Meth. Appl. Mech. Eng, 143(1{2), pp. 175{194 (1997). 34. Rebelo, N., Walker, N., and Foadian, H. Simulation of implantable stents", In Abaqus User's Conference, 143, pp. 421{34 (2001). 2390 F. Nematzadeh and H. Mostaan/Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 2382{2390 35. Conti, M., Beule, M., Mortier, P., Loo, D., Verdonck, P., Vermassen, F., Segers, P., Auricchio, F., and Verhegghe, B. Nitinol embolic protection _lters: design investigation by _nite element analysis", J. Mater. Eng. Perform, 18, pp. 787{792 (2009). 36. Auricchio, F., Coda, A., Reali, A., and Urbano, M. SMA numerical modeling versus experimental results: parameter identi_cation and model prediction capabilities", J. Mater. Eng. Perform, 18, pp. 649{654 (2009). 37. Arghavani, J., Auricchio, F., Naghdabadi, R., and Sohrabpour, S. A 3-D phenomenological constitutive model for shape memory alloys under multiracial loadings", Int. J. Plasticity, 26, pp. 976{991 (2010). 38. Khalil Alla_, J., Ren, X., and Eggeler, G. The mechanism of multistage martensite transformation in aged Ni-rich NiTi shape memory alloys", Acta Mater, 50, pp. 793{803 (2002). 39. Prince, A.G., Quarini, G.L., and Morgan, J.E. Thermomechanical response of 50.7% Ni-Ti alloy in the pseudoelastic regime", Mater. Sci. Tech, 19, pp. 561{ 565 (2003). 40. Boyd, J.G. and Lagoudas, D.C. A thermodynamical constitutive model for shape memory materials", Part I. The Monolithic Shape Memory Alloy, 12, pp. 805{ 842 (1996). 41. Qidwai, M.A. and Lagoudas, D.C. Numerical implementation of a shape memory alloy thermomechanical constitutive model using return mapping algorithms", Int. J. Num. Meth. Eng, 47, pp. 1123{1168 (2000). 42. Koop, K., Lootz, D., Kranz, C., Momma, C., Becher, B., and Kieckbusch, M. Stent material nitinol - determination of characteristics and component simulation using the _nite element method", Prog. in Biomed. Research, 6(3), pp. 237{245 (2001). 43. Gong, X., Duerig, T., Pelton, A., Rebelo, N., and Perry, K. Finite element analysis and experimental evaluation of superelastic Nitinol stents", In Proceedings of the International Conference on Shape Memory and Superelastic Technology Conference - SMST (2003). 44. Gideon, V., Kumar, P., and Mathew, L. Finite element analysis of the mechanical performance of aortic valve stent designs", Trends Biomater. Artif. Organs, 23(1), pp. 16{20 (2009). 45. Salaheldin, M., Zilla, S., and Franz, T.A. Computational study of structural designs for a smalldiameter composite vascular graft promoting tissue regeneration", Cardiovascular Eng. Tech, 1(4), pp. 269{281 (2010). 46. Auricchio, F., Conti, M., Morganti, S., and Reali, A. Shape memory alloy: from constitutive modeling to _nite element analysis of stent deployment", CMES, 57(3), pp. 225{243 (2010). 47. Pelton, A.R., Schroeder, V., Mitchell, M., Gong, X., Barneya, M., and Robertson, S. Fatigue and durability of Nitinol stents", J. Mech. Behav. Biomed. Mater, 1, pp. 153{164 (2008). 48. Santillo, M. Fracture and crack propagation study of a super_cial femoral artery Nitinol stent", Ms Thesis University of Pavia, Italy (2008). 49. Wang, R. and Ravi-Chandar, K. Mechanical response of a metallic aortic stent - Part I: Pressure diameter relationship", J. Appl. Mech, 71, pp. 697{705 (2004a). 50. Wang, R. and Ravi-Chandar, K. Mechanical response of a metallic aortic stent - Part II: A beam on elastic foundation model", J. Appl. Mech, 71, pp. 706{712 (2004b). 51. Wu, W., Qi, M., Liu, X., Yang, D., and Wang, W. Delivery and release of Nitinol stent in carotid artery and their interactions: a _nite element analysis", J. Biomech, 40(13), pp. 3034{40 (2007).