In this article, a collocation finite element method based on septic B-splines as a tool has been carried out to obtain the numerical solutions of the nonlinear generalized Rosenau-RLW equation. One of the advantages of this method is that when the bases are chosen at a high degree, better numerical solutions are obtained. Effectiveness of the method is demonstrated by solving the equation with various initial and boundary conditions. Also, in order to detect the performance of the method we have computed L2 and L1 error norms and two lowest invariants IM and IE: The obtained numerical results have been compared with some of those in the literature for similar parameters. This comparison clearly shows that the obtained results are better than and found in good conformity with the some earlier results. Stability analysis denotes that our algorithm, based on a Crank Nicolson approximation in time, is unconditionally stable.
Pan, X. and Zhang, L. Numerical simulation for general Rosenau-RLWequation: An average linearized conservative scheme", Mathematical Problems in Engineering, 2012, Article ID 517818, 15 pages (2012). 2. Pan, X., Zheng, K., and Zhang, L. Finite di_erence discretization of the Rosenau-RLW equation", Appl. Anal., 92, pp. 2578{2589 (2013). 3. Atouani, N. and Omrani, K. Galerkin _nite element method for the Rosenau-RLW equation", Computers and Mathematics with Applications, 66, pp. 289{303 (2013). 4. Yagmurlu, N.M., Karaagac, B., and Kutluay, S. Numerical solutions of rosenau-RLW equation using Galerkin cubic B-spline _nite element method", American Journal of Computational and Applied Mathematics, 7, pp. 1{10 (2017). 5. Wongsaijai, B. and Poochinapan, K. A three-level average implicit _nite di_erence scheme to solve equation obtained by coupling the Rosenau-KdV equation and the Rosenau-RLW equation", Applied Mathematics and Computation, 245, pp. 289{304 (2014). 6. Zuo, J., Zhang, Y.M., Zhang, T.D., et al. A new conservative di_erence scheme for the general Rosenau- RLW equation", Bound. Value Probl., 2010, pp. 1{13 (2010). 7. Pan, X. and Zhang, L. Numerical simulation for general Rosenau-RLWequation: An average linearized conservative scheme", Mathematical Problems in Engineering, 2012, Article ID 517818, 15 pages (2012). 8. Mittal, R.C. and Jain, R.K. Numerical solution of general Rosenau-RLW, equations using quintic Bsplines collocation method", Commun. Numer. Anal., Article ID cna-00129, pp. 1{16 (2012). 9. Wongsaijai, B., Poochinapan, K., and Disyadej, T. A compact _nite di_erence method for solving the general Rosenau-RLW equation", IAENG International Journal of Applied Mathematics, 44, pp. 1{8 (2014). 10. Wang, H., Wang, J., and Li, S. A new conservative nonlinear high order compact _nite di_erence scheme for the general Rosenau-RLWequation", Bound. Value Probl., 2015, pp. 1{16 (2015). 11. Wang, H., Li, S., and Wang, J. "A conservative weighted _nite di_erence scheme for the general Rosenau-RLW equation", Comp. Appl. Math., 36, pp. 63{78 (2017). 12. Ar_, M. and Dereli, Y. Numerical solutions of the general Rosenau-RLW equation using meshless kernel based method of lines", Journal of Physics: Conference Series, 766, pp. 1{6 (2016). 13. Cai, W., Sun, Y., and Wang, Y. Variational discretizations for the generalized Rosenau type equations", Appl. Math.Comput., 271, pp. 860{873 (2015). 14. Korteweg, D.J. and de Vries, G. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary wave", Philosophical Magazine, 39, pp. 422{443 (1895). 15. Raslan, K.R., El-Danaf, Talaat S., and Ali, Khalid K. Application of linear combination between cubic B-spline collocation methods with di_erent basis for solving the KdV equation", Computational Methods for Di_erential Equations, 4, pp. 191{204 (2016). 16. Raslan, K.R., El-Danaf, Talaat S., and Ali, Khalid K. Collocation method with quintic b-spline method for solving hirota-satsuma coupled KDV equation", International Journal of Applied Mathematical Research, 5, pp. 123{131 (2016). 17. Raslan, K.R., El-Danaf, Talaat, S., and Ali, Khalid, K. New numerical treatment for solving the KDV equation", Journal of Abstract and Computational Mathematics, 2, pp. 1{12 (2017). 18. Peregrine, D.H. Calculations of the development of an undular bore", J. Fluid Mech., 25, pp. 321{330 (1966). 19. El-Danaf, Talaat S., Raslan, K.R., and Ali, Khalid K. New numerical treatment for the generalized regularized long wave equation based on _nite di_erence scheme", Int. J. of S. Comp. and Eng. (IJSCE)', 4, pp. 16{24 (2014). 20. El-Danaf, Talaat, S., Raslan, K.R., and Ali, Khalid K. Collocation method with cubic B-splines for solving the GRLWequation", Int. J. of Num. Meth. and Appl., 15, pp. 39{59 (2016). 21. Raslan, K.R., El-Danaf, Talaat S., and Ali, Khalid K. New exact solution of coupled generalized regularized long wave equation", Journal of the Egyptian Mathematical Society, 25, pp. 400{405 (2017). 22. Raslan, K.R., Ali, Khalid K., and Shallal, Muhannad A. Solving the space-time fractional RLWand MRLW equations using modi_ed extended tanh method with the Riccati equation", British Journal of Mathematics & Computer Science, 21, pp. 1{15 (2017). 23. El-Danaf, Talaat S., Raslan, K.R., and Ali, Khalid K. Non-polynomial spline method for solving the generalized regularized long wave equation", Communication in Mathematical Modeling and Applications, 2, pp. 1{17 (2017). 24. Karakoc, S.B.G., Ucar, Y., and Yagmurlu, N.M. Numerical solutions of the MRLW equation by cubic Bspline galerkin _nite element method", Kuwait Journal of Science, 42, pp. 141{159, (2015). S.B.G. Karakoc/Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 772{783 783 25. Rouzegar, J. and Sharifpoor, R. Abdoli. A _nite element formulation for bending analysis of isotropic and orthotropic plates based on two-variable re_ned plate theory", Scientia Iranica, B, 22, pp. 196{207 (2015). 26. Pan, X. and Zhang, L. A new _nite di_erence scheme for the Rosenau-Burgers equation", Applied Mathematics and Computation, 218, pp. 8917{8924 (2012). 27. Rosenau, P. A quasi-continuous description of a nonlinear transmission line", Phys. Scripta., 34, pp. 827{829 (1986). 28. Rosenau, P. Dynamics of dense discrete systems", Progr. Theory. Phys., 79, pp. 1028{1042 (1988). 29. Park, M.A. On the Rosenau equation", Math. Appl. Comput., 9, pp. 145{152 (1990). 30. Karakoc, S.B.G. and Zeybek, H. Solitary-wave solutions of the GRLW equation using septic B-spline collocation method", Applied Mathematics and Computation, 289, pp. 159{171 (2016). 31. Prenter, P.M., Splines and Variational Methods, John Wiley & Sons, New York, NY, USA (1975). 32. Esen, A. A lumped Galerkin method for the numerical solution of the modi_ed equal-width wave equation using quadratic B-splines", International Journal of Computer Mathematics, 83, pp. 449{459 (2006). 33. Saka, B., S_ahin, A., and Da_g, I. B-spline collocation algorithms for numerical solution of the RLW equation", Numer. Methods Partial Di_erential Eq., 27, pp. 581{607 (2011). 34. Geyikli, T. and Karakoc, S.B.G. Septic B-spline collocation method for the numerical solution of the modi_ed equal width wave equation", Applied Mathematics, 2, pp. 739{749 (2011). 35. Ak, T., Dhawan, S., Karakoc, S.B.G., et al. Numerical study of Rosenau-KdV equation using _nite element method based on collocation approach", Mathematical Modelling and Analysis, 22, pp. 373{383 (2017). 36. Karakoc, S.B.G., Yagmurlu, N.M., and Ucar, Y. A numerical approximation to solution of the modi_ed regularized long wave (MRLW) equation using quintic B-splines", Bound. Value Probl., 27, pp. 1{17 (2013). 37. Ak, T., Karakoc, S.B.G., and Biswas, A. Application of Petrov-Galerkin _nite element method to shallow water waves model: Modi_ed Korteweg-de Vries equation", Scientia Iranica B., 24, pp. 1148{1159 (2017). 38. Hassan, H.N. An accurate numerical solution for the modi_ed equal width wave equation using the Fourier pseudo-spectral method", Journal of Applied Mathematics and Physics, 4, pp. 1054{1067 (2016). 39. Essa, Y.M. Abo Multigrid method for the numerical solution of the modi_ed equal width wave equation", Applied Mathematics, 7, pp. 1140{1147 (2016). 40. Karakoc, S.B.G. and Geyikli, T. Numerical solution of the modi_ed equal width wave equation", International Journal of Di_erential Equations, 2012, pp. 1{ 15 (2012).
Karakoc, S. (2020). A new numerical application of the generalized Rosenau-RLW equation. Scientia Iranica, 27(2), 772-783. doi: 10.24200/sci.2018.50490.1721
MLA
S.B.G. Karakoc. "A new numerical application of the generalized Rosenau-RLW equation". Scientia Iranica, 27, 2, 2020, 772-783. doi: 10.24200/sci.2018.50490.1721
HARVARD
Karakoc, S. (2020). 'A new numerical application of the generalized Rosenau-RLW equation', Scientia Iranica, 27(2), pp. 772-783. doi: 10.24200/sci.2018.50490.1721
VANCOUVER
Karakoc, S. A new numerical application of the generalized Rosenau-RLW equation. Scientia Iranica, 2020; 27(2): 772-783. doi: 10.24200/sci.2018.50490.1721