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Abstract. This study implemented a collocation �nite element method based on septic
B-splines as a tool to obtain the numerical solutions of the nonlinear generalized Rosenau-
RLW equation. One of the advantages of this method is that when the bases are chosen
at a high degree, better numerical solutions are obtained. E�ectiveness of the method
is demonstrated by solving the equation with various initial and boundary conditions.
Further, in order to detect the performance of the method, L2 and L1 error norms and
two lowest invariants IM and IE were computed. The obtained numerical results were
compared with some of those in the literature for similar parameters. This comparison
clearly shows that the obtained results are better than and in good conformity with some
of the earlier results. Stability analysis demonstrates that the proposed algorithm, based
on a Crank Nicolson approximation in time, is unconditionally stable.

© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

This paper is related to the following nonlinear Gener-
alized Rosenau-RLW (GR-RLW) equation:

Ut � Uxxt + Uxxxxt + Ux + (Up)x = 0; (1)

with the homogeneous boundary conditions:

U(a; t) = 0; U(b; t) = 0;

Ux(a; t) = 0; Ux(b; t) = 0;

Uxx(a; t) = 0; Uxx(b; t) = 0; t > 0; (2)

and an initial condition:
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U(x; 0) = U0(x) a � x � b; (3)

where p � 2 is an integer, Uxxt is the viscous term,
U0(x) is the smooth function, t is time, and x is the
space coordinate. The following usual Rosenau-RLW
(R-RLW) equation:

Ut � Uxxt + Uxxxxt + Ux + 2UUx = 0 (4)

is obtained by taking p = 2 in Eq. (1). When
p = 3, the GR-RLW equation is called Modi�ed
Rosenau-RLW (MR-RLW) equation. So far, various
studies have investigated R-RLW equation. Pan and
Zhang [1] examined the usual R-RLW equation by the
�nite di�erence method and ideating a conservative
algorithm, preserving the original conservative prop-
erties for the equation. Pan et al. [2] developed
numerical solutions of the R-RLW equation using the
�nite di�erence method of Crank-Nicolson type and
created the existence of numerical solutions by the
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Brouwer �xed-point theorem. The boundedness and
convergence of the approximate solutions for the semi-
discrete Galerkin method to the R-RLW equation were
analyzed by Atouani and Omrani [3]. Moreover, a
Galerkin �nite element method was implemented on R-
RLW equation using cubic B-spline base functions by
Yagmurlu et al. [4]. An algorithm to obtain the solution
of the nonlinear wave by coupling the Rosenau-KdV
and the R-RLW equations was suggested by Wongsaijai
and Poochinapan [5]. The numerical solutions of the
GR-RLW equation have been studied in recent years.
Zuo et al. [6] presented a new conservative di�erence
scheme and showed the existence of its di�erence-based
solutions by Brouwer �xed-point theorem. Numerical
solutions for the GR-RLW equation were considered,
and an energy conservative linearized �nite di�erence
scheme was proposed by Pan and Zhang [7]. Mittal
and Jain [8] developed a collocation method for solving
the nonlinear GR-RLW equation. A compact �nite dif-
ference procedure to solve the GR-RLW equation was
presented by Wongsaijai et al. [9]. Wang et al. [10, 11]
presented a new conservative �nite di�erence scheme
for the initial-boundary value problem of the GR-RLW
equation and designed a new conservative nonlinear
fourth-order compact �nite di�erence algorithm for
R-RLW equation given together with the initial and
boundary conditions. Ar� and Dereli [12] solved the
GR-RLW equation by using the meshless kernel-based
method of lines. Cai et al. [13] derived the Lagrangians
of generalized Rosenau-type equations and suggested
the corresponding multi-symplectic formulations.

Nonlinear wave phenomenon is a very important
area of scienti�c research, which many scientists exam-
ined in the past. Various mathematical models such as:
KdV equation [14{17] (Eq. (5)), RLW equation [18{25]
(Eq. (6)), Rosenau equation, and many others have
been designed by scientists [5].

Ut + aUUx + bUxxx = 0; (5)

Ut + Ux + aUUx � bUxxt = 0: (6)

In the study of the dynamics of dense discrete sys-
tems, the case of wave-wave and wave-wall interactions
cannot be described using the well-known KdV equa-
tion [26]. Moreover, the slope and the behavior of high
amplitude waves may not be well predicted by Eq. (5),
since it was modeled under the assumption of weak
anharmonicity [26]. To cope with the lack of Eq. (5),
the following equation, as proposed by Rosenau [27,28],
is used:

Ut + Ux + Uxxxxt +
�
U2�

x = 0: (7)

Park [29] examined the existence, uniqueness, and
regularity of the solutions for the Rosenau equation.

This study designed a septic B-spline collocation
method for the GR-RLW equation. The rest of the pa-
per can be summarized briey as follows: In the second
section, the collocation �nite element method is applied
to the GR-RLW equation. The resulting system can be
e�ciently solved with a kind of Thomas algorithm. The
linear stability analysis of the algorithm is investigated
in Section 3. In the fourth section, the motion of
the single solitary wave is examined in the case of the
problem with di�erent initial and boundary conditions.
The numerical results are given both in tables and
�gures, and the obtained results are also compared
with some of those available in the literature. Section 5
concludes this paper with a summary of �ndings.

2. Collocation method with septic B-splines

To carry out numerical computations, the solution area
of the problem is limited over an interval a � x �
b. Consider the partition of the space interval [a; b]
into equally sized �nite elements of length h at the
points xm such that a = x0 < x1 < ::: < xN = b
and h = b�a

N . The set of septic B-spline functions
f��3(x); ��2(x); :::; �N+3(x)g forms a basis over the
solution region [a; b]. The numerical solution UN (x; t)
is expressed in terms of the septic B-splines as follows:

UN (x; t) =
N+3X
m=�3

�m(x)�m(t); (8)

where �m(t) is the time-dependent parameter and will
be de�ned under the boundary and collocation condi-
tions [30]. Septic B-splines �m(x) (m = �3;�2; :::; N+
3) at the knots xm are designated over the interval
[a; b] by Prenter [31] as calculated by Eq. (9) shown
in Box I. The septic B-splines are used to overcome
higher order derivatives in the equation and, when the
bases are chosen at a high degree, better numerical
results are generally obtained. A characteristic �nite
interval [xm; xm+1] is projected to the interval [0; 1] by
a local coordinate conversion given by h� = x � xm,
0 � � � 1 [32]. Therefore, the septic B-splines (9) are
given in terms of � over [0,1] as follows:

�m�3 = 1� 7� + 21�2 � 35�3 + 35�4 � 21�5

+7�6 � �7;

�m�2 = 120� 392� + 504�2 � 280�3 + 84�5

�42�6 + 7�7;

�m�1 = 1191� 1715� + 315�2 + 665�3 � 315�4

�105�5 + 105�6 � 21�7;

�m = 2416� 1680� + 560�4 � 140�6 + 35�7;
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�m(x) =
1
h7

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

(x� xm�4)7 [xm�4; xm�3]
(x� xm�4)7 � 8(x� xm�3)7 [xm�3; xm�2]
(x� xm�4)7 � 8(x� xm�3)7 + 28(x� xm�2)7 [xm�2; xm�1]
(x� xm�4)7 � 8(x� xm�3)7 + 28(x� xm�2)7 � 56(x� xm�1)7 [xm�1; xm]
(xm+4 � x)7 � 8(xm+3 � x)7 + 28(xm+2 � x)7 � 56(xm+1 � x)7 [xm; xm+1]
(xm+4 � x)7 � 8(xm+3 � x)7 + 28(xm+2 � x)7 [xm+1; xm+2]
(xm+4 � x)7 � 8(xm+3 � x)7 [xm+2; xm+3]
(xm+4 � x)7 [xm+3; xm+4]
0 otherwise:

(9)

Box I

�m+1 = 1191 + 1715� + 315�2 � 665�3 � 315�4

+105�5 + 105�6 � 35�7;

�m+2 = 120 + 392� + 504�2 + 280�3 � 84�5 � 42�6

+21�7;

�m+3 = 1 + 7� + 21�2 + 35�3 + 35�4 + 21�5

+7�6 � �7;

�m+4 = �7: (10)

For the problem, the �nite elements are described
with the space [xm; xm+1]: According to Eqs. (9) and
(8), the nodal values of Um; U 0m; U 00m; U 000m , and U ivm are
given in terms of the element parameters �m in [33]:

UN (xm; t) = Um = �m�3 + 120�m�2 + 1191�m�1

+2416�m+1191�m+1+120�m+2+�m+3;

U 0m =
7
h

(��m�3 � 56�m�2 � 245�m�1 + 245�m+1

+56�m+2 + �m+3);

U 00m =
42
h2 (�m�3 + 24�m�2 + 15�m�1 � 80�m

+15�m+1 + 24�m+2 + �m+3);

U 000m =
210
h3 (��m�3 � 8�m�2 + 19�m�1 � 19�m+1

+8�m+2 + �m+3);

U ivm =
840
h4 (�m�3 � 9�m�1 + 16�m � 9�m+1 + �m+3);

(11)

and the variation of U over the element [xm; xm+1] is
given as follows [34]:

U =
N+3X
m=�3

�m�m: (12)

For Eq. (12), in the solution area of the problem,
the �rst septic B-spline base function's index is �3,
and the last septic B-spline base function's index is
N + 3. When we de�ne the collocation points with
the nodes and use Eqs. (11) to utilize Um (its space
derivatives) and substitute it into Eq. (1), a set of
ordinary di�erential equations of the form is given [30]:

_�m�3 + 120 _�m�2 + 1191 _�m�1 + 2416 _�m

+ 1191 _�m+1 + 120 _�m+2 + _�m+3

+
7
h

(��m�3 � 56�m�2 � 245�m�1 + 245�m+1

+ 56�m+2 + �m+3)� 42
h2 ( _�m�3 + 24 _�m�2

+ 15 _�m�1 � 80 _�m + 15 _�m+1 + 24 _�m+2 + _�m+3)

+
840
h4 ( _�m�3 � 9 _�m�1 + 16 _�m � 9 _�m+1 + _�m+3)

+ p
7
h
Zm(��m�3 � 56�m�2 � 245�m�1

+ 245�m+1 + 56�m+2 + �m+3) = 0; (13)

where Zm = (�m�3 + 120�m�2 + 1191�m�1 + 2416�m +
1191�m+1 + 120�m+2 + �m+3)p�1 [33,35].

If parameters �i and the time derivatives _�i in
Eq. (13) are separated by the Crank-Nicolson formula:

�i =
�n+1
i + �ni

2
; (14)

and the usual �nite di�erence approximation:

_�i =
�n+1
i � �ni

�t
; (15)
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a repetition relationship is derived between two time
levels n and n+ 1 relating to two unknown parameters
�n+1
i ; and �ni for i = m� 3;m� 2; :::;m+ 2;m+ 3

1�n+1
m�3 + 2�n+1

m�2 + 3�n+1
m�1 + 4�n+1

m

+ 5�n+1
m+1 + 6�n+1

m+2 + 7�n+1
m+3

= 7�nm�3 + 6�nm�2 + 5�nm�1+

4�nm + 3�nm+1 + 2�nm+2 + 1�nm+3; (16)

where:

1 = [1� E(1 + pZm)�M +K];

2 = [120� 56E(1 + pZm)� 24M ];

3 = [1191� 245E(1 + pZm)� 15M � 9K];

4 = [2416 + 80M + 16K];

5 = [1191 + 245E(1 + pZm)� 15M � 9K];

6 = [120 + 56E(1 + pZm)� 24M ];

7 = [1 + E(1 + pZm)�M +K];

m = 0; 1; : : : ; N E =
7

2h
�t;

M =
42
h2 ; K =

840
h4 : (17)

System (16) involves (N + 1) linear equations
containing (N + 7) unknown coe�cients (��3; ��2; ��1;
: : : ; �N+1; �N+2; �N+3)T . Six additional restraints are
required to get a unique solution for this system. These
are obtained from the boundary conditions (2) and can
be used to remove ��3; ��2; ��1 and �N+1; �N+2; �N+3
from Systems (16), leading to a matrix equation for the
N+1 unknowns dn = (�0; �1; : : : ; �N )T of the form [30]:

Y dn+1 = Zdn: (18)

The matrices Y and Z are (N + 1)� (N + 1) matrices.
Two or three inner iterations are implemented on the
term �n� = �n + 1

2 (�n � �n�1) at each time step to
overcome the non-linearity caused by Zm. Before the
beginning of the solution period, initial parameters d0

are established by using the initial condition and the
following derivatives at the boundaries:

UN (x; 0) = U(xm; 0); m = 0; 1; 2; :::; N

(UN )x(a; 0) = 0; (UN )x(b; 0) = 0;

(UN )xx(a; 0) = 0; (UN )xx(b; 0) = 0;

(UN )xxx(a; 0) = 0; (UN )xxx(b; 0) = 0:

Therefore, the matrix form of the initial vector d0 is
given by the expressions shown in Box II [35].

3. Stability analysis

To investigate the stability analysis of the presented
scheme, it is necessary to use Von-Neumann theory.

V d0 = w;

where V =

2666666666666666666666664

1536 2712 768 24

82731
81

210568:5
81

104796
81

10063:5
81 1

9600
81

96597
81

195768
81

96474
81 120 1

. . .

1 120 1191 2416 1191 120 1

1 120 96474
81

195768
81

96597
81

9600
81

1 10063:5
81

104796
81

210568:5
8

82731
81

24 768 2712 1536

3777777777777777777777775
d0 = (�0; �1; �2; :::; �N�2; �N�1; �N )T and w = (U(x0; 0); U(x1; 0); :::; U(xN�1; 0); U(xN ; 0))T :

Box II
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Assume that the quantity Up in the nonlinear term
UpUx is locally constant [30]. Substituting the Fourier
mode �nm = �nei�mh, (i =

p�1) into Eq. (16), we
obtain the following:

�n+1(�1ei(m�3)� + �2ei(m�2)� + �3ei(m�1)�

+ �4eim�+�5ei(m+1)�+�6ei(m+2)�+�7ei(m+3)�)

= �n(�7ei(m�3)� + �6ei(m�2)�

+ �5ei(m�1)� + �4eim� + �3ei(m+1)�

+ �2ei(m+2)� + �1ei(m+3)�); (19)

where � is the mode number, h is the element size, and
� = �h:
�1 = 1� �1 � �2 + �3;

�2 = 120� 56�1 � 24�2;

�3 = 1191� 245�1 � 15�2 � 9�3;

�4 = 2416 + 80�2 + 16�3;

�5 = 1191 + 245�1 � 15�2 � 9�3;

�6 = 120 + 56�1 � 24�2;

�7 = 1 + �1 � �2 + �3;

m = 0; 1; : : : ; N;

�1 =
7�t
2h

(1 + Zm); �2 =
42
h2 ; �3 =

840
h4 :

If Eq. (19) is simpli�ed the following is obtained:

� =
A+ iB
A� iB ;

where:
A =(2382� 30�2 � 18�3) cos(�) + (240� 48�2)

cos(2�) + (2� 2�2 + 2�3) cos(3�)

+ (2416 + 80�2 + 16�3);

B =(490E(1 + Zm)) sin(�) + (112E(1 + Zm))

sin(2�) + (2E(1 + Zm)) sin(3�): (20)

According to the Fourier stability analysis, for the
given scheme to be stable, the condition j�j < 1
must be satis�ed. Using the symbolic programming
software or using simple calculations, since a2 + b2 =
a2 + (�b)2, it becomes evident that the modulus of j�j
is 1. Consequently the linearized algorithm is found
unconditionally stable [36].

4. Numerical results and discussion

In this part, in order to verify the correction of our
algorithm, some numerical experiments were calcu-
lated. For performing the numerical simulation of the
motion of single solitary wave for which exact solutions
have been given before, four sets of parameters were
used and discussed. For the GR-RLW equation, the
parameters used by authors [6,7,9,10] to obtain the
corresponding results are taken as guiding principles
for the current calculations. The initial boundary
value problems (1){(3) have the following conservative
quantities:

IM =
1
2

Z b

a
U(x; t)dx;

IE =
1
2

Z b

a
[U2(x; t) + U2

x(x; t) + U2
xx(x; t)]dx; (21)

corresponding to the mass and energy of the shallow
water waves, respectively [8]. Susceptibility of the
numerical scheme is controlled by both the error
norm [37]:

L2 =
Uexact � UN2 '

vuuth
NX
J=0

���Uexactj � (UN )j
���2;

and the error norm:

L1 =
Uexact � UN1 ' max

j

���Uexactj � (UN )j
��� :

4.1. Case 1
For the �rst numerical calculation, the parameter p =
2 is chosen with various values of h and �t over
the interval [�30; 120]: For this case, since the exact
solution of the problem is [6]:

U(x; t) =
15
38

sech4[
p

13
26

(x� 169
133

)t]; (22)

the initial condition for the problem is taken as follows:

U(x; 0) =
15
38

sech4[
p

13
26

x]: (23)

The invariants and error norms for the single solitary
wave over the �30 � x � 120 are shown in Table 1.
Moreover, a comparison of the error norms for di�erent
values of h and �t is made, as shown in Table 2.
From Table 2, it is seen that the error norms obtained
by the proposed method are found much better than
and in good agreement with the others. Behaviors of
single soliton time up to t = 40 are given in Figure 1.
According to Figure 1, single soliton travels to the
right at an invariable speed and keeps its amplitude
and shape with the increasing time, as expected [36].
The amplitude is 0.394736 at t = 0 and located at
x = 0:0, while it is 0.394623 at t = 60 and located
at x = 76:2. The certain di�erence in amplitudes at
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Table 1. The invariants and the error norms for single solitary wave for p = 2 over the �30 � x � 120:

h = �t = 0:4 IM IE L2 � 10�3 L1 � 10�3

t

0 1.8976582 0.5331775 0 0

20 1.8976042 0.5331517 11.75577 4.56558

40 1.8975504 0.5331264 19.85843 7.29166

60 1.8974979 0.5331012 26.90336 9.64250

h = �t = 0:2

t

0 1.8976587 0.5331776 0 0

20 1.8976556 0.5331742 2.95668 1.15327

40 1.8976520 0.5331709 4.98638 1.83689

60 1.8976486 0.5331676 6.78589 2.43822

h = �t = 0:1

t

0 1.8976588 0.5331777 0 0

20 1.8976624 0.5331773 0.73165 0.28627

40 1.8976656 0.5331769 1.28582 0.47045

60 1.8976687 0.5331765 1.80098 0.64362

h = �t = 0:05

t

0 1.8976569 0.5331776 0 0

20 1.8976614 0.5331775 0.20059 0.07495

40 1.8976655 0.5331775 0.39859 0.14198

60 1.8976695 0.5331774 0.42845 0.16500

h = �t = 0:025

t

0 1.8976564 0.5331771 0 0

20 1.8976610 0.5331770 0.09000 0.03165

40 1.8976652 0.5331770 0.10490 0.04479

60 1.8976693 0.5331770 0.34458 0.13007

Table 2. Comparison of error norms for p = 2.

L2 � 10�2 L1 � 10�3

t = 40; �60 � x � 120 Present [7] [9] Present [7] [9]

h = 0:5; �t = 0:1 0:125481 3:25288 0:23029 0:46077 1:19460 0:86284

h = 0:25; �t = 0:1 0:125389 0:78777 0:23608 0:46216 2:88972 0:88670

t = 60; �30 � x � 120 Present [6] [10] Present [6] [10]

h = �t = 0:4 2:69033 5:47632 � 9:64250 19:58718 3:5235

h = �t = 0:2 0:67858 1:38525 � 2:43822 4:98376 0:80413

h = �t = 0:1 0:18009 0:34743 � 0:64362 1:25218 0:19123

h = �t = 0:05 0:04284 0:086914 � 0:16500 0:31345 0:04659
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Figure 1. Motion of single solitary wave for p = 2;
h = 0:25; and �t = 0:1 over the interval [�30; 120] at
speci�ed times.

times t = 0 and t = 40 is 1:13 � 10�4; therefore,
there is a minor di�erence between the amplitudes.
Error values between exact and numerical solutions are
demonstrated in Figure 2.

4.2. Case 2
For the second numerical calculation, the parameter
p = 4 with values of h = 0:25, 0:5 and �t = 0:1 are
used through the interval [�60; 120]: In this case, the
analytical solution of the problem has been found as
follows [6]:

U(x; t)=
�

455
1482

� 1
3

sech
4
3

�
3

2
p

29

�
x� 841

741

�
t
�
: (24)

Therefore, the initial condition for this problem is taken
as follows:

Figure 2. Errors for p = 2; h = 0:25; and �t = 0:1 at
t = 40.

U(x; 0) =
�

455
1482

� 1
3

sech
4
3

�
3

2
p

29
x
�
: (25)

For these parameters, the amplitude and velocity of the
solitary wave are found as 0.30701 and v = 1:13495,
respectively. The experiment is run from t = 0 to t =
40, and values of the invariants and error norms are
shown in Table 3. Table 3 shows that invariants are
nearly constant over time.

It is noticeable from the table that the initial
values of the invariants IM and IE change by less
than 2:81 � 10�5 for di�erent values of h. Moreover,
this study has found that error norms L2 and L1
are obtained small enough during the computer run.
Therefore, the proposed method is sensibly conserva-
tive. The values of the error norms derived by our
scheme are compared with those of schemes derived
in [7,9], as shown in Table 4. This table clearly shows
that the error norms obtained by the proposed method

Table 3. The invariants and the error norms for single solitary wave for p = 4 over the �60 � x � 120:

h = 0:5; �t = 0:1 IM IE L2 � 10�3 L1 � 10�3

t

0 3.1329030 1.4338473 0 0

10 3.1328960 1.4338400 0.84067 0.35644

20 3.1328890 1.4338327 1.60312 0.63568

30 3.1328819 1.4338254 2.34349 0.89170

40 3.1328749 1.4338181 3.08384 1.15137

h = 0:25; �t = 0:1

t

0 3.1329030 1.4338473 0 0

10 3.1328960 1.4338400 0.83723 0.35706

20 3.1328890 1.4338327 1.59768 0.63291

30 3.1328819 1.4338254 2.33605 0.89233

40 3.1328749 1.4338181 3.07437 1.14864
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Table 4. Comparison of error norms for p = 4.

t = 40; �60 � x � 120; �t = 0:1 L2 � 10�2 L1 � 10�3

Present [7] [9] Present [7] [9]
h = 0:5 0:30838 7:45173 0:44788 1:15137 27:87120 1:71122
h = 0:25 0:30743 1:73066 0:47254 1.14864 6.47969 1:81252

Figure 3. Motion of single solitary wave for p = 4;
h = 0:25; and �t = 0:1 over the interval [�60; 120] at
speci�ed times.

are less than the others. For a visual representation,
the simulations of single soliton for values of h =
0:25, �t = 0:1 at times t = 0, 20, and 40 are
illustrated in Figure 3. According to this �gure, the
numerical scheme performs the motion of propagation
of a single solitary wave, which acts on the right side at
a nearly unchanged speed and conserves its amplitude
and shape with the increasing amount of time. The
amplitude is 0.674613 at t = 0 and located at x = 0:0,
while it is 0.673988 at t = 40 and located at x = 45:4.
A certain di�erence in amplitudes at times t = 0 and
t = 40 is 6:25 � 10�4 such that there is a minor
di�erence between the amplitudes. Error distribution
at time t = 40 is depicted graphically in Figure 4 [38].
As is seen, the maximum number of errors occurs
around the central position of the solitary wave.

4.3. Case 3
For the third numerical calculation, we have taken the
parameter p = 8 with values of h = 0:25, 0:5 and �t =
0:1 over the range [�60; 120]: In this case, an exact
solution and the initial condition for the problem are
respectively found as follows:

U(x; t)=
�

2475
13802

� 1
7

sech
4
7

�
7

2
p

85
(x� 7225

6901
)t
�
; (26)

U(x; 0) =
�

2475
13802

� 1
7

sech
4
7

�
7

2
p

85
x
�
: (27)

Figure 4. Errors for p = 4; h = 0:25; and �t = 0:1 at
t = 40.

For these parameters, the amplitude and velocity of
a solitary wave are found to be 0.179321 and v =
1:046949, respectively. The algorithm is run at time t =
40 to obtain the invariants and error norms in di�erent
time periods. The obtained results are tabulated in
Table 5. Table 5 shows that the invariants are nearly
constant over time [30].

According to the table, the initial values of the
invariants IM and IE change by less than 5� 10�5 for
di�erent values of h. Further, it is found that the error
norms L2 and L1 are obtained as su�ciently small
through the computer run. Thus, it can be argued
that the proposed method is marginally conservative.
Table 6 indicates a comparison of the values of the
error norms derived by the proposed scheme and those
derived by other schemes [7,9]. It is obviously seen
from this table that the error norms obtained by the
proposed method are smaller than those by other
methods again [39]. The behaviors of solutions for
values of h = 0:25, �t = 0:1 at times t = 0, 20,
and 40 are depicted in Figure 5. According to this
�gure, the solitary wave goes to the right at constant
velocity and maintains its shape and amplitude. The
amplitude is 0.782305 at t = 0 and located at x = 0:0,
while it is 0.781552 at t = 40 and located at x = 41:75.
The certain di�erence in amplitudes at times t = 0
and t = 40 is 7:53 � 10�4; therefore, there is a minor
di�erence between the amplitudes [34]. The error
graph at t = 40 is shown in Figure 6. It is observed
that the maximum number of errors is associated with
solitary waves and between �4�10�4 and 6�10�4 [36].
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Table 5. The invariants and the error norms for single solitary wave for p = 8 over the �60 � x � 120:

h = 0:5; �t = 0:1 IM IE L2 � 10�3 L1 � 10�3

t
0 4.8710424 2.3675820 0 0
10 4.8710440 2.3675673 0.72292 0.30896
20 4.8710430 2.3675526 1.50307 0.59229
30 4.8710407 2.3675380 2.39050 0.90427
40 4.8710374 2.3675234 3.40928 1.25518

h = 0:25; �t = 0:1
t
0 4.8710422 2.3675820 0 0
10 4.8710454 2.3675673 0.71837 0.30641
20 4.8710471 2.3675526 1.49461 0.58856
30 4.8710482 2.3675380 2.37752 0.89891
40 4.8710487 2.3675234 3.39111 1.12480

Table 6. Comparison of error norms for p = 8.

t = 40; �60 � x � 120; �t = 0:1 L2 � 10�2 L1 � 10�3

Present [7] [9] Present [7] [9]
h = 0:5 0.340928 8:03730 0.431841 1:25518 29:5337 1:61891
h = 0:25 0:339111 1:80583 0:46713 1.24801 6.66740 1:75739

Figure 5. Motion of single solitary wave for p = 8;
h = 0:25; and �t = 0:1 over the interval [�60; 120] at
speci�ed times.

4.4. Case 4
For the last numerical calculation, the problem with
parameters p = 16 , h = 0:5, 0:25, and �t = 0:1 at
the interval [�60; 120] is considered. In this case, since
analytical solution of the problem is [9]:

U(x; t)=
�

15827
169386

� 1
15

sech
4
15

�
15

2
p

93
(x� 85849

84693
)t
�
;
(28)

the initial condition for the problem is taken as follows:

U(x; 0) =
�

15827
169386

� 1
15

sech
4
15

�
15

2
p

93
x
�
: (29)

Figure 6. Errors for p = 8; h = 0:25; and �t = 0:1 at
t = 40.

For these parameters, the amplitude and velocity of the
solitary wave are found as 0.093437 and v = 1:013649,
respectively. Error norms L2 and L1 and conserved
quantities IM and IE are given in Table 7 up to time
t = 40. It is noticeably seen from Table 7 that
invariants are nearly constant during the simulation,
and the initial values of invariants IM change by less
than 1� 10�2; however, the initial value of IE changes
by less than 7�10�5 for di�erent values of h. Moreover,
the error norms L2 and L1 are obtained small enough
throughout the computer run. Therefore, the proposed
method is sensibly conservative. Herein, the values of
the error norms obtained by the present method are
compared with those obtained by methods proposed
in [7,9], as shown in Table 8. This table clearly shows
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Table 7. The invariants and the error norms for single solitary wave for p = 16 over the �60 � x � 120:

h = 0:5; �t = 0:1 IM IE L2 � 10�3 L1 � 10�3

t
0 8.5743072 4.1877184 0 0
10 8.5784605 4.1877007 1.10975 0.56601
20 8.5817596 4.1876854 2.16628 0.71926
30 8.5845639 4.1876709 3.10083 0.74798
40 8.5868723 4.1876570 4.06967 1.01156

h = 0:25; �t = 0:1
t
0 8.5742501 4.1881116 0 0
10 8.5789396 4.1880903 1.37957 0.63322
20 8.5832196 4.1880718 2.76709 0.81657
30 8.5872190 4.1880543 3.95618 0.86438
40 8.5908517 4.1880374 5.09401 1.00763

Table 8. Comparison of error norms for p = 16.

t = 40; �60 � x � 120; �t = 0:1 L2 � 10�2 L1 � 10�3

Present [7] [9] Present [7] [9]
h = 0:5 0.406967 6:13044 0.357253 1:01156 22:5471 1:18759
h = 0:25 0:509401 1:37857 0:38438 1.00763 5.05919 1:30630

Figure 7. Motion of single solitary wave for p = 16;
h = 0:25; and �t = 0:1 over the interval [�60; 120] at
speci�ed times.

that the error norms obtained by the proposed method
are less than those by the others [39]. The pro�les of
the solitary wave for h = 0:25 and �t = 0:1 at di�erent
time levels are shown in Figure 7. Figure 7 displays
that this method performs the motion of propagation
of the solitary wave satisfactorily, which travels to the
right at an invariable speed and nearly conserves its
amplitude and shape with the increasing time [40].
The amplitude is 0.686098 at t = 0 and located at
x = 0, while it is 0.685675 at t = 40 and located at
x = 43:250. The absolute di�erence in amplitudes at
times t = 0 and t = 40 is 4:2 � 10�4 such that there
is a minor di�erence between the amplitudes [34]. To

Figure 8. Errors for p = 16; h = 0:25; and �t = 0:1 at
t = 40.

represent the errors between the exact and numerical
results over the problem region, error distributions are
drawn for solitary waves at time t = 40 in Figure 8.
It is indicated that the maximum number of errors
is associated with the solitary waves and between
�1� 10�3 and 1� 10�3 [36].

5. Conclusion

This study successfully implemented the septic B-
spline collocation method on the GR-RLW equation
to analyze the motion of a single solitary wave whose
analytical solution is known. To show how viable
and accurate the numerical solutions of the test prob-
lems are, the error norms L2 and L1 and conserved
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quantities IM and IE were computed. The obtained
numerical results indicated that the error norms were
satisfactorily small and the conservation laws were
marginally constant in all computer program runs. The
proposed numerical scheme for the equation was found
more accurate than the other previously mentioned
schemes found in the literature. Stability analysis
was carried out, and the linearized numerical scheme
was obtained unconditionally stable. Therefore, it
can be mentioned that the proposed numerical scheme
is useful to obtain the numerical solutions of other
important nonlinear problems in various �elds.
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