Estimation of mixed-mode fracture parameters by gene expression programming

Document Type : Article

Authors

Department of Civil Engineering, Engineering Faculty, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

Abstract

The linear elastic fracture phenomenon has been characterized with stress intensity factors (SIFs). In this study a general function is obtained in order to predict the fracture parameters. Numerical calculation of the SIFs in a mixed-mode condition is a cumbersome task. In this research, more than 6800 numerical analyses using extended finite element method are conducted to simulate the fracture problem. States are considered for a plate with an arbitrary edge or center crack. Mixed mode SIFs were calculated using of interaction integral. Then, Gene Expression Programming (GEP) method is utilized to extraction of a function. Results show acceptable correlations between numerical calculations and genetic programming functions. R-square (R2) values are in a range of 0.91 to 0.96 that guarantees the accuracy of the inferred functions.

Keywords

Main Subjects


References:
[1] Zahnder, A. T. "Fracture Mechanics",  Springer, (2012). [2] Gdoutos, E. E. "Fracture Mechanics: An Introduction",  Springer, (2005). [3] Janssen, M., et al. "Fracture Mechanics, Second Edition",  Taylor & Francis, (2004). [4] Aliha, M. R. M., et al. "Experimental study on modeI fracture toughness of different asphalt mixtures", Scientia Iranica. 22(1), pp. 120-130 (2015). [5] Likeb, A., et al. "Stress Intensity Factor and Limit Load Solutions for New Pipe-ring Specimen with Axial Cracks", Procedia Mater. Sci., 3(0), pp. 1941-1946 (2014).  [6] Joseph, R. P., et al. "Stress intensity factors of a corner crack emanating from a pinhole of a solid cylinder", Eng. Fract. Mech., 128(0), pp. 1-7 (2014).  [7] Evans, R., et al. "Improved stress intensity factors for selected configurations in cracked plates", Eng. Fract. Mech., 127(0), pp. 296-312 (2014).  [8] Duan, J., et al. "A note on stress intensity factors for a crack emanating from a sharp V-notch", Eng. Fract. Mech., 90(0), pp. 180-187 (2012). [9] De Luycker, E., et al. "X-FEM in isogeometric analysis for linear fracture mechanics", Int. J. Numer. Methods Eng., 87(6), pp. 541-565 (2011).  [10] De Klerk, A., et al. "Lower and upper bound estimation of isotropic and orthotropic fracture mechanics problems using elements with rotational degrees of freedom", Commun. Numer. Methods Eng., 24(5), pp. 335-353 (2008). [11] Yoneyama, S., et al. "Evaluating mixed-mode stress intensity factors from full-field displacement fields obtained by optical methods", Eng. Fract. Mech., 74(9), pp. 1399-1412 (2007).  [12] Banks-Sills, L., et al. "Methods for calculating stress intensity factors in anisotropic materials: Part II—Arbitrary geometry", Eng. Fract. Mech., 74(8), pp. 1293-1307 (2007). 
[13] Ayhan, A. O. "Stress intensity factors for three-dimensional cracks in functionally graded materials using enriched finite elements", Int. J. Solids Struct., 44(25–26), pp. 8579-8599 (2007).  [14] Shahani, A. R. and Nabavi, S. M. "Closed form stress intensity factors for a semi-elliptical crack in a thick-walled cylinder under thermal stress", International Journal of Fatigue. 28(8), pp. 926-933 (2006).  [15] Chen, D.-C., et al. "Application of Ductile Fracture Criterion for Tensile Test of Zirconium Alloy 702", Scientia Iranica. 25(2), pp. 824-829 (2018). (en) [16] Khademalrasoul, A. "Linear and curvature internal heterogeneous boundaries influences on mixed mode crack propagation using level set method", Journal of Structural and Construction Engineering.), pp. - (2017).  [17] Sukumar, N. and Prévost, J. H. "Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation", Int. J. Solids Struct., 40(26), pp. 7513-7537 (2003). [18] Moës, N. and Belytschko, T. "Extended finite element method for cohesive crack growth", Eng. Fract. Mech., 69(7), pp. 813-833 (2002). 
[19] Yin, S., et al. "Buckling and vibration extended isogeometric analysis of imperfect graded Reissner-Mindlin plates with internal defects using NURBS and level sets", Computers & Structures. 177), pp. 23-38 (2016). [20] Bui, T. Q. "Extended isogeometric dynamic and static fracture analysis for cracks in piezoelectric materials using NURBS", Comput. Meth. Appl. Mech. Eng., 295, pp. 470-509 (2015).  [21] Bhardwaj, G., et al. "Numerical Simulations of Cracked Plate using XIGA under Different Loads and Boundary Conditions", Mech. Adv. Mater. Struct.), pp. 00-00 (2015). [22] Bhardwaj, G., et al. "Stochastic fatigue crack growth simulation of interfacial crack in bi-layered FGMs using XIGA", Comput. Meth. Appl. Mech. Eng., 284(0), pp. 186-229 (2015).  [23] Arzani, H., et al. "Optimum two-dimensional crack modeling in discrete least-squares meshless method by charged system search algorithm", Scientia Iranica. 24(1), pp. 143-152 (2017).  [24] Sukumar, N., et al. "Partition of unity enrichment for bimaterial interface cracks", Int. J. Numer. Methods Eng., 59(8), pp. 1075-1102 (2004). [25] Moës, N., et al. "A finite element method for crack growth without remeshing", Int. J. Numer. Methods Eng., 46(1), pp. 131-150 (1999). 
[26] Babuška, I. and Zhang, Z. "The partition of unity method for the elastically supported beam", Comput. Meth. Appl. Mech. Eng., 152(1–2), pp. 1-18 (1998). [27] Nasiri, S., et al. "Fracture mechanics and mechanical fault detection by artificial intelligence methods: A review", Eng. Fail. Anal., 81(Supplement C), pp. 270-293 (2017). [28] Greenbaum, J., et al. "Increased detection of genetic loci associated with risk predictors of osteoporotic fracture using a pleiotropic cFDR method", Bone. 99(Supplement C), pp. 62-68 (2017). [29] Xue, Y., et al. "A new fracture prediction method by combining genetic algorithm with neural network in low-permeability reservoirs", Journal of Petroleum Science and Engineering. 121(Supplement C), pp. 159-166 (2014). [30] Mohammadi, S. "Extended Finite Element Method: for Fracture Analysis of Structures",  Wiley, (2008).
[31] Ferreira, C. "Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence",  Springer, (2006). [32] Belytschko, T. and Black, T. "Elastic crack growth in finite elements with minimal remeshing", Int. J. Numer. Methods Eng., 45(5), pp. 601-620 (1999).  [33] Babuska, I., Melenk, J. "The Partition of unity method", Int. J. Numer. Methods Eng., 40), pp. 727–758 (1997). [34] Melenk, J. M. and Babuška, I. "The partition of unity finite element method: Basic theory and applications", Comput. Meth. Appl. Mech. Eng., 139(1–4), pp. 289-314 (1996).  [35] Yau, J. F., et al. "A Mixed-Mode Crack Analysis of Isotropic Solids Using Conservation Laws of Elasticity", Journal of Applied Mechanics-transactions of The Asme. 47(2), pp.  (1980).