Estimation of mixed-mode fracture parameters by gene expression programming

Document Type : Article

Authors

Department of Civil Engineering, Engineering Faculty, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

Abstract

The linear elastic fracture phenomenon has been characterized with stress intensity factors (SIFs). In this study a general function is obtained in order to predict the fracture parameters. Numerical calculation of the SIFs in a mixed-mode condition is a cumbersome task. In this research, more than 6800 numerical analyses using extended finite element method are conducted to simulate the fracture problem. States are considered for a plate with an arbitrary edge or center crack. Mixed mode SIFs were calculated using of interaction integral. Then, Gene Expression Programming (GEP) method is utilized to extraction of a function. Results show acceptable correlations between numerical calculations and genetic programming functions. R-square (R2) values are in a range of 0.91 to 0.96 that guarantees the accuracy of the inferred functions.

Keywords

Main Subjects


1. Zahnder, A.T., Fracture Mechanics, Springer (2012).  2. Gdoutos, E.E., Fracture Mechanics: An Introduction,  Springer (2005).  3. Janssen, M., Zuidema, J., and Wanhill, R., Fracture  Mechanics, Second Edition, Taylor & Francis (2004).  4. Aliha, M.R.M., Behbahani, H., Fazaeli, H., and Rezaifar,  M.H. Experimental study on mode I fracture  toughness of di_erent asphalt mixtures", Scientia Iranica,  22(1), pp. 120{130 (2015). (en)  5. Likeb, A., Gubeljak, N., and Matvienko, Y. Stress  intensity factor and limit load solutions for new pipering  specimen with axial cracks", Procedia Mater. Sci.,  3, pp. 1941{1946 (2014).  6. Joseph, R.P., Purbolaksono, J., Liew, H.L., Ramesh,  S., and Hamdi, M. Stress intensity factors of a corner  crack emanating from a pinhole of a solid cylinder",  Eng. Fract. Mech., 128, pp. 1{7 (2014).  7. Evans, R., Clarke, A., Gravina, R., Heller, M., and  Stewart, R. Improved stress intensity factors for  selected con_gurations in cracked plates", Eng. Fract.  Mech., 127, pp. 296{312 (2014).  8. Duan, J., Li, X., and Lei, Y. A note on stress intensity  factors for a crack emanating from a sharp V-notch",  Eng. Fract. Mech., 90, pp. 180{187 (2012).  9. De Luycker, E., Benson, D.J., Belytschko, T., Bazilevs,  Y., and Hsu, M.C. X-FEM in isogeometric analysis  for linear fracture mechanics", Int. J. Numer. Methods  Eng., 87(6), pp. 541{565 (2011).  10. De Klerk, A., Visser, A.G., and Groenwold, A.A.  Lower and upper bound estimation of isotropic and  orthotropic fracture mechanics problems using elements  with rotational degrees of freedom", Commun.  Numer. Methods Eng., 24(5), pp. 335{353 (2008).  11. Yoneyama, S., Ogawa, T. and Kobayashi, Y. Evaluating  mixed-mode stress intensity factors from full-_eld  displacement _elds obtained by optical methods", Eng.  Fract. Mech., 74(9), pp. 1399{1412 (2007).  A. Khademalrasoul and A. Adib/Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 229{238 237  12. Banks-Sills, L., Wawrzynek, P.A., Carter, B., Ingraffea,  A.R., and Hershkovitz, I. Methods for calculating  stress intensity factors in anisotropic materials: Part  II{Arbitrary geometry", Eng. Fract. Mech., 74(8), pp.  1293{1307 (2007).  13. Ayhan, A.O. Stress intensity factors for threedimensional  cracks in functionally graded materials  using enriched _nite elements", Int. J. Solids Struct.,  44(25{26), pp. 8579{8599 (2007).  14. Shahani, A.R. and Nabavi, S.M. Closed form stress  intensity factors for a semi-elliptical crack in a thickwalled  cylinder under thermal stress", International  Journal of Fatigue, 28(8), pp. 926{933 (2006).  15. Chen, D-C., Chang, D-Y., Chen, F-H., and Kuo, TY.  Application of ductile fracture criterion for tensile  test of zirconium alloy 702", Scientia Iranica, 25(2),  pp. 824{829 (2018). (en)  16. Khademalrasoul, A. Linear and curvature internal  heterogeneous boundaries inuences on mixed mode  crack propagation using level set method", Journal of  Structural and Construction Engineering, 4(3), pp. 42{  54 (2017).  17. Sukumar, N. and Pr_evost, J.H. Modeling quasi-static  crack growth with the extended _nite element method.  Part I: Computer implementation", Int. J. Solids  Struct., 40(26), pp. 7513{7537 (2003).  18. Moes, N. and Belytschko, T. Extended _nite element  method for cohesive crack growth", Eng. Fract. Mech.,  69(7), pp. 813{833 (2002).  19. Yin, S., Yu, T., Bui, T.Q., Liu, P., and Hirose,  S. Buckling and vibration extended isogeometric  analysis of imperfect graded Reissner-Mindlin plates  with internal defects using NURBS and level sets",  Computers & Structures, 177, pp. 23{38 (2016).  20. Bui, T.Q. Extended isogeometric dynamic and static  fracture analysis for cracks in piezoelectric materials  using NURBS", Comput. Meth. Appl. Mech. Eng.,  295, pp. 470{509 (2015).  21. Bhardwaj, G., Singh, I.V., Mishra, B.K., and Kumar,  V. Numerical simulations of cracked plate using  XIGA under di_erent loads and boundary conditions",  Mech. Adv. Mater. Struct., 23(6), pp. 704{714 (2016).  22. Bhardwaj, G., Singh, I.V., and Mishra, B.K. Stochastic  fatigue crack growth simulation of interfacial crack  in bi-layered FGMs using XIGA", Comput. Meth.  Appl. Mech. Eng., 284, pp. 186{229 (2015).  23. Arzani, H., Kaveh, A., and Taheri Taromsari, M.  Optimum two-dimensional crack modeling in discrete  least-squares meshless method by charged system  search algorithm", Scientia Iranica, 24(1), pp. 143{152  (2017).  24. Sukumar, N., Huang, Z.Y., Pr_evost, J.H., and Suo, Z.  Partition of unity enrichment for bimaterial interface  cracks", Int. J. Numer. Methods Eng., 59(8), pp. 1075{  1102 (2004).  25. Moes, N., Dolbow, J., and Belytschko, T. A _nite  element method for crack growth without remeshing",  Int. J. Numer. Methods Eng., 46(1), pp. 131{150  (1999).  26. Babu_ska, I. and Zhang, Z. The partition of unity  method for the elastically supported beam", Comput.  Meth. Appl. Mech. Eng., 152(1{2), pp. 1{18 (1998).  27. Nasiri, S., Khosravani, M.R., and Weinberg, K. Fracture  mechanics and mechanical fault detection by  arti_cial intelligence methods: A review", Eng. Fail.  Anal., 81(Supplement C), pp. 270{293 (2017).  28. Greenbaum, J., Wu, K., Zhang, L., Shen, H., Zhang,  J., and Deng, H-W. Increased detection of genetic  loci associated with risk predictors of osteoporotic  fracture using a pleiotropic cFDR method", Bone.  99(Supplement C), pp. 62{68 (2017).  29. Xue, Y., Cheng, L., Mou, J., and Zhao, W. A  new fracture prediction method by combining genetic  algorithm with neural network in low-permeability  reservoirs", Journal of Petroleum Science and Engineering,  121(Supplement C), pp. 159{166 (2014).  30. Mohammadi, S., Extended Finite Element Method: for  Fracture Analysis of Structures, Wiley (2008).  31. Ferreira, C., Gene Expression Programming: Mathematical  Modeling by an Arti_cial Intelligence, Springer  (2006).  32. Belytschko, T. and Black, T. Elastic crack growth  in _nite elements with minimal remeshing", Int. J.  Numer. Methods Eng., 45(5), pp. 601{620 (1999).  33. Babu_ska, I. and Melenk, J. The partition of unity  method", Int. J. Numer. Methods Eng., 40, pp. 727{  758 (1997).  34. Melenk, J.M. and Babu_ska, I. The partition of unity  _nite element method: Basic theory and applications",  Comput. Meth. Appl. Mech. Eng., 139(1{4), pp. 289{  314 (1996).  35. Yau, J.F., Wang, S.S., and Corten, H.T. A mixedmode  crack analysis of isotropic solids using conservation  laws of elasticity", Journal of Applied Mechanics-  Transactions of the ASME, 47(2), pp. 335{341 (1980).