Estimation of mixed-mode fracture parameters by gene expression programming

Document Type : Article


Department of Civil Engineering, Engineering Faculty, Shahid Chamran University of Ahvaz, Ahvaz, Iran.


The linear elastic fracture phenomenon has been characterized with stress intensity factors (SIFs). In this study a general function is obtained in order to predict the fracture parameters. Numerical calculation of the SIFs in a mixed-mode condition is a cumbersome task. In this research, more than 6800 numerical analyses using extended finite element method are conducted to simulate the fracture problem. States are considered for a plate with an arbitrary edge or center crack. Mixed mode SIFs were calculated using of interaction integral. Then, Gene Expression Programming (GEP) method is utilized to extraction of a function. Results show acceptable correlations between numerical calculations and genetic programming functions. R-square (R2) values are in a range of 0.91 to 0.96 that guarantees the accuracy of the inferred functions.


Main Subjects

[1] Zahnder, A. T. "Fracture Mechanics",  Springer, (2012). [2] Gdoutos, E. E. "Fracture Mechanics: An Introduction",  Springer, (2005). [3] Janssen, M., et al. "Fracture Mechanics, Second Edition",  Taylor & Francis, (2004). [4] Aliha, M. R. M., et al. "Experimental study on modeI fracture toughness of different asphalt mixtures", Scientia Iranica. 22(1), pp. 120-130 (2015). [5] Likeb, A., et al. "Stress Intensity Factor and Limit Load Solutions for New Pipe-ring Specimen with Axial Cracks", Procedia Mater. Sci., 3(0), pp. 1941-1946 (2014).  [6] Joseph, R. P., et al. "Stress intensity factors of a corner crack emanating from a pinhole of a solid cylinder", Eng. Fract. Mech., 128(0), pp. 1-7 (2014).  [7] Evans, R., et al. "Improved stress intensity factors for selected configurations in cracked plates", Eng. Fract. Mech., 127(0), pp. 296-312 (2014).  [8] Duan, J., et al. "A note on stress intensity factors for a crack emanating from a sharp V-notch", Eng. Fract. Mech., 90(0), pp. 180-187 (2012). [9] De Luycker, E., et al. "X-FEM in isogeometric analysis for linear fracture mechanics", Int. J. Numer. Methods Eng., 87(6), pp. 541-565 (2011).  [10] De Klerk, A., et al. "Lower and upper bound estimation of isotropic and orthotropic fracture mechanics problems using elements with rotational degrees of freedom", Commun. Numer. Methods Eng., 24(5), pp. 335-353 (2008). [11] Yoneyama, S., et al. "Evaluating mixed-mode stress intensity factors from full-field displacement fields obtained by optical methods", Eng. Fract. Mech., 74(9), pp. 1399-1412 (2007).  [12] Banks-Sills, L., et al. "Methods for calculating stress intensity factors in anisotropic materials: Part II—Arbitrary geometry", Eng. Fract. Mech., 74(8), pp. 1293-1307 (2007). 
[13] Ayhan, A. O. "Stress intensity factors for three-dimensional cracks in functionally graded materials using enriched finite elements", Int. J. Solids Struct., 44(25–26), pp. 8579-8599 (2007).  [14] Shahani, A. R. and Nabavi, S. M. "Closed form stress intensity factors for a semi-elliptical crack in a thick-walled cylinder under thermal stress", International Journal of Fatigue. 28(8), pp. 926-933 (2006).  [15] Chen, D.-C., et al. "Application of Ductile Fracture Criterion for Tensile Test of Zirconium Alloy 702", Scientia Iranica. 25(2), pp. 824-829 (2018). (en) [16] Khademalrasoul, A. "Linear and curvature internal heterogeneous boundaries influences on mixed mode crack propagation using level set method", Journal of Structural and Construction Engineering.), pp. - (2017).  [17] Sukumar, N. and Prévost, J. H. "Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation", Int. J. Solids Struct., 40(26), pp. 7513-7537 (2003). [18] Moës, N. and Belytschko, T. "Extended finite element method for cohesive crack growth", Eng. Fract. Mech., 69(7), pp. 813-833 (2002). 
[19] Yin, S., et al. "Buckling and vibration extended isogeometric analysis of imperfect graded Reissner-Mindlin plates with internal defects using NURBS and level sets", Computers & Structures. 177), pp. 23-38 (2016). [20] Bui, T. Q. "Extended isogeometric dynamic and static fracture analysis for cracks in piezoelectric materials using NURBS", Comput. Meth. Appl. Mech. Eng., 295, pp. 470-509 (2015).  [21] Bhardwaj, G., et al. "Numerical Simulations of Cracked Plate using XIGA under Different Loads and Boundary Conditions", Mech. Adv. Mater. Struct.), pp. 00-00 (2015). [22] Bhardwaj, G., et al. "Stochastic fatigue crack growth simulation of interfacial crack in bi-layered FGMs using XIGA", Comput. Meth. Appl. Mech. Eng., 284(0), pp. 186-229 (2015).  [23] Arzani, H., et al. "Optimum two-dimensional crack modeling in discrete least-squares meshless method by charged system search algorithm", Scientia Iranica. 24(1), pp. 143-152 (2017).  [24] Sukumar, N., et al. "Partition of unity enrichment for bimaterial interface cracks", Int. J. Numer. Methods Eng., 59(8), pp. 1075-1102 (2004). [25] Moës, N., et al. "A finite element method for crack growth without remeshing", Int. J. Numer. Methods Eng., 46(1), pp. 131-150 (1999). 
[26] Babuška, I. and Zhang, Z. "The partition of unity method for the elastically supported beam", Comput. Meth. Appl. Mech. Eng., 152(1–2), pp. 1-18 (1998). [27] Nasiri, S., et al. "Fracture mechanics and mechanical fault detection by artificial intelligence methods: A review", Eng. Fail. Anal., 81(Supplement C), pp. 270-293 (2017). [28] Greenbaum, J., et al. "Increased detection of genetic loci associated with risk predictors of osteoporotic fracture using a pleiotropic cFDR method", Bone. 99(Supplement C), pp. 62-68 (2017). [29] Xue, Y., et al. "A new fracture prediction method by combining genetic algorithm with neural network in low-permeability reservoirs", Journal of Petroleum Science and Engineering. 121(Supplement C), pp. 159-166 (2014). [30] Mohammadi, S. "Extended Finite Element Method: for Fracture Analysis of Structures",  Wiley, (2008).
[31] Ferreira, C. "Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence",  Springer, (2006). [32] Belytschko, T. and Black, T. "Elastic crack growth in finite elements with minimal remeshing", Int. J. Numer. Methods Eng., 45(5), pp. 601-620 (1999).  [33] Babuska, I., Melenk, J. "The Partition of unity method", Int. J. Numer. Methods Eng., 40), pp. 727–758 (1997). [34] Melenk, J. M. and Babuška, I. "The partition of unity finite element method: Basic theory and applications", Comput. Meth. Appl. Mech. Eng., 139(1–4), pp. 289-314 (1996).  [35] Yau, J. F., et al. "A Mixed-Mode Crack Analysis of Isotropic Solids Using Conservation Laws of Elasticity", Journal of Applied Mechanics-transactions of The Asme. 47(2), pp.  (1980).