
Scientia Iranica B (2020) 27(1), 229{238

Sharif University of Technology
Scientia Iranica

Transactions B: Mechanical Engineering
http://scientiairanica.sharif.edu

Estimation of mixed-mode fracture parameters by gene
expression programming

A. Khademalrasoul� and A. Adib

Department of Civil Engineering, Engineering Faculty, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

Received 4 November 2017; received in revised form 5 August 2018; accepted 29 October 2018

KEYWORDS
Fracture mechanics;
Gene Expression
Programming (GEP);
Stress Intensity
Factors (SIFs);
Extended �nite
element method.

Abstract. The linear elastic fracture phenomenon is characterized by Stress Intensity
Factors. In this study, a general function was obtained in order to predict the fracture
parameters. The numerical calculation of the SIFs in a mixed-mode condition is a
cumbersome task. In this research, more than 6800 numerical analyses using the extended
�nite element method were conducted to simulate the fracture problem. States were
considered for a plate with an arbitrary edge or center crack. Mixed-mode SIFs were
calculated by the interaction integral. Then, Gene Expression Programming (GEP)
method was utilized to extract a function. Results showed acceptable correlations between
numerical calculations and genetic programming functions. R-square (R2) values are in
the range of 0.91 to 0.96, which guarantee the accuracy of the inferred functions.
© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Stress intensity factors are important parameters of
the linear elastic fracture mechanics [1{3]. SIFs are
useful for life prediction and fracture initiation in the
structures. Further, crack path prediction is based
on the concept of the SIF. Therefore, it is possible
to arrest a crack according to the SIFs and the stress
conditions in the vicinity of the crack tips. In general,
there are three independent modes of fracture in the
structural elements. Opening, shearing, and tearing
are admissible displacements of crack surfaces with
respect to each other. In two-dimensional problems,
opening and shearing modes are considered [4]. Crack
propagation could be determined with a combination
of these two modes of fracture. Maximum tangential
stress, minimum strain density, and maximum energy
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release rate are the most important criteria in the
crack propagation. However, crack path prediction is
characterized by the SIFs that demonstrate the stress
conditions in the vicinity of the crack tips. Therefore,
many e�orts have been made on di�erent approaches
to calculating the SIFs [5{14]. Numerical, analytical,
and experimental studies have been conducted on the
principles of the fracture parameters [15].

Finite element method, boundary element ap-
proach, meshless methods, and isogeometric analysis
are signi�cant numerical methods in fracture mechan-
ics. Among them, the Extended Finite Element
Method (XFEM) has emerged as a 
exible approach
in the fracture mechanics framework [16{18]. Mesh-
less and isogeometric analysis methods have some
di�culties in essential boundary conditions [19{22].
Moreover, the sti�ness matrix in the boundary element
method is fully developed and, hence, matrix calculus
is somewhat time consuming [23]. In other words,
since the XFEM is based on the conventional �nite
element analysis, all bene�ts of �nite element method
are preserved. In general, XFEM mathematically is
based on the concept of the partition of unity ap-
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proximation �nite element spaces [24{26]. Additional
degrees of freedom are introduced in the �nite element
approximation spaces and, eventually, any kind of
discontinuities is implicitly imposed on the solution
space. In this way, the in
uences of the discontinuities
are considered in the stress distributions.

Unlike other extensive studies on fracture param-
eters, limited studies have performed on the concept of
the genetic algorithm and arti�cial neural networks to
estimate the fracture parameters [27]. This may arise
from the fact that these methods need a lot of input
data [28,29], whereas collecting a large number of the
SIFs in di�erent bodies with various geometries is a
cumbersome task. Direct and indirect approaches have
been used to calculate the SIFs. Stress extrapolation
and displacement extrapolation are direct approaches,
and the energy method is indirect method [30]. In the
framework of the energy methods, since the SIFs are
calculated using remote data from the crack tip, higher
accuracy can be achieved.

Gene Expression Programming (GEP) method
states the best equation for calculating the SIF based
on di�erent geometries and loading conditions. GEP
was �rst invented by Ferreira and is a development
of GP [31]. Although GEP uses the same kind of
expression tree as GP, the entities evolved by ET are
the expression of genomes.

In this investigation, a large number of numerical
analysis cases are used to predict the fracture param-
eters. In order to generate the input data, more than
6800 numerical models using the XFEM are produced.
In this study, the XFEM in combination with the level
set method is adopted to simulate any kind of discon-
tinuous media. Two level set functions were utilized to
simulate the crack tips (crack tip function) and crack
body (Heaviside function). Among di�erent methods
for the SIF calculation, the interaction integral is used.
The interaction integral (M -integral) is based on the
well-known J-integral. M -integral is the dual form of
the J-integral. Interaction integral is formulated in the
XFEM computer code using MATLAB programming
language. All numerical calculations of the M -integral
implemented in the computer code are solved auto-
matically. All procedures include equivalent domain
selection around the crack tips, detection of the crack
tip elements, and the mathematical solutions of the
integrals. By applying interaction integral, both the
�rst and second stress intensity factors are obtained
in one solution step. Then, in
uencing parameters
for the SIFs are chosen as the input data for genetic
programming models. These parameters consist of
loading conditions, geometry speci�cations, and crack
con�gurations. Crack con�gurations such as the length
of the crack and the crack inclination angles are chosen.
Geometry speci�cations include the width and height
of the plates. Finally, loading conditions are remote

stress acting whether in the x (shear mode) and y
(tension mode). Then, genetic programming is used to
predict a function for SIFs in mixed-mode conditions.
However, the functions that have been proposed for
the single edge-crack plate are mostly focused on the
pure mode. This study considers the general mixed-
mode conditions. Functions are inferred for plates with
edge and center cracks with arbitrary inclinations up
to 60 degrees with respect to the horizon. Quadratic
�nite element meshes are considered �ne enough to
achieve accurate results. Further, in order to increase
the numerical integration in the vicinity of the crack
tips, the sub triangulation is performed on the crack
tip elements. Then, in order to establish the obtained
functions, T -pair test is conducted. h and p values are
calculated to be an approval for the GEP calculations.
In addition, the Root Mean Square Error (RMSE) is
chosen as the �tness function.

This paper is outlined as follows: Section 2 is
dedicated to explaining the principles of the XFEM.
Section 3 shows the calculation of the mixed-mode SIFs
in one step using the interaction integral. Section 4
explains the genetic programming method in function
�nding problems. Section 5 presents the numerical
results by the XFEM and expresses the unique formulas
for both SIFs in edge and center cracked plates.

2. Principles of the XFEM

The XFEM was �rstly introduced [32]. It is charac-
terized by some special features in fracture mechanics.
These special features of the extended �nite element
result from the partition of unity �nite element prop-
erty of XFEM, of which the most prominent features
include:

1. The ability to include the local behavior of the
solution in the �nite element space;

2. The ability to construct �nite element spaces of any
desired regularity.

The XFEM can be assumed to be a classical FEM
capable of handling arbitrary discontinuities. In fact,
in the XFEM, any types of discontinuities are modeled
implicitly onto the solution space [33,34]. In this
method, by introducing additional degrees of freedom,
any kind of discontinuities can be modeled. The XFEM
approximates the displacement of point x as follows:

u(x) : R2 ! R2;

uh(x; t) =
X
i2I

ui(t)Ni(x)

+
X
j2J

bj(t)Nj(x)H( (x; t))
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+
X
k2K

Nk(x)

 
4X
l=1

alk(t)Bl(r; �)

!
; (1)

where Ni(x) is the standard basis function of the �nite
element for the ith node, and t is time. Time is
used for each parameter, which increases monoton-
ically. Therefore, the whole solution steps include
equilibrium equations with no dynamic e�ects. J
and K represent nodal point sets for crack body and
crack tip, respectively. ui, bj , and ak demonstrate
degrees of freedom. Further, H( (x; t)) and Bl(r; �)
are the enrichment functions of the XFEM. These two
functions are called Heaviside and crack tip enrichment
functions, respectively. The enrichment functions
consist of two series of functions. By introducing these
functions to the in
uenced �nite element nodes, the
implicit additional degrees of freedom are added to the
solution space. On the other hand, the e�ects of the
considered discontinuity are simulated numerically.

3. Interaction integral

Behavior of a body with a discontinuity, such as crack,
is generally characterized by a parameter such as SIFs
or path independent J-integral in linear elastic fracture
mechanics. Further, during the last decades, much
e�ort has been made for SIFs calculation. Theoreti-
cal, numerical, and experimental methods have been
employed for determining the SIFs in the vicinity of
the crack tips.

Interaction integral (M -integral) has been used
for mixed-mode of fracture problems. M -integral was
introduced by Yau et al. [35] for isotropic materials.
In fact, M -integral is the dual form of the J-integral
for the cracked body. In this method, an auxiliary
�eld is introduced and imposed on the solution space.
The auxiliary stresses and displacement derived by
Westergaard and Williams have been used. Displace-
ment and stress auxiliary �elds have been chosen in
a situation to satisfy the equilibrium equations and
boundary conditions in the problem of the traction-
free crack surfaces. The mixed-mode of SIFs has been
calculated in one solution by conducting a computer
subroutine in the extended �nite element framework.
This integral is numerically calculated in the equivalent
area in the vicinity of the crack tips. The interaction
integral is de�ned as follows:

M (1;2) =
Z
A

 
�(1)
ij
@u(2)

i
@x1

+�(2)
ij
@u(1)

i
@x1

�W (1;2)�1j

!
@q1

@xj
dA;

(2)

where A is the integration area, q1 is the smoothing
function with a value of 0 or 1 for di�erent nodes, �ij
is the Kronecker delta, x1 is the local coordinate axis
in the crack line direction, W (1;2) is the interaction

strain energy density, �ij is the stress tensor, and ui
stands for the displacements vector. It should be noted
that by introducing the q1 function, the equivalent
domain around the crack tip moves like a rigid body.
Superscripts \1" and \2" demonstrate the real and
auxiliary �elds, respectively.

4. Principles of GEP method

GEP was �rst invented by Ferreira and is a develop-
ment of GP [31]. Although GEP uses the same kind of
expression tree as GP, the entities evolved by expres-
sion tree are the expression of genomes. In basic GEP,
genes (individuals) are often selected and copied into
the next generation based on their �tness by roulette-
wheel sampling with elitism [31]. This guarantees
the survival and cloning of the best individual to the
next generation. The variation in the population is
introduced by applying one or more genetic operators
to select chromosomes. Most genetic operators used
in genetic algorithms can also be implemented in GEP
with minor changes, including crossover, mutation, and
rotation. The 
owchart of GEP is shown in Figure 1.
The algorithm begins with an initial population with
many genes. After generations of evolution, the best
chromosome will be selected and its decoding process
can be expressed [31]. According to the GEP rules,
the genes will be expressed as ETs and the ETs can
also be easily decoded as an algebraic equation. A
more detailed description of GEP can be found in the
referenced study [31].

In our work, the procedure of construction for
handgrip force prediction is as follows:

Step 1: Population initialization
The set of functions F and the set of terminals
T were selected to create the chromosomes. The
edge-crack and center-crack plates are di�erent in
terms of chosen elements. Five elements were chosen

Figure 1. The 
owchart of gene expression algorithm.
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Figure 2. Geometric con�guration of cracked plates.

as in a mathematical function set for edge-crack
problems: F = [+;�;�;�; power]. The termi-
nal set (b; h; a; �yy; �xx) was selected. Lengths of
head and tail are 8 and 30, respectively, and �ve
genes per chromosomes were employed. In addi-
tion, nine elements were chosen as in a mathemat-
ical function set for center-crack problems: F =
[+;�;�;�; power; sqrt; exp; sin; cos]. The terminal
set (b; h; a; �; �yy; �xx) was selected. Lengths of head
and tail are 8 and 30, and six genes per chromosomes
were employed. Figure 2 shows the assumed plate
with an edge or a center crack;
Step 2: Genetic operation
Basic genetic operators were applied for each gen-
eration including mutation, inversion, IS (Insertion
Sequence) transposition, RIS (Root Insertion Se-
quence) transposition, one-point recombination, two-
point recombination, gene recombination, and gene
transposition. The details about how these opera-
tors are implemented can be seen in the referenced
study [31];
Step 3: Fitness calculation
The maximum �tness (fmax) was set to 1000 based
on the default of GEP method and the suitable
magni�cation of maximum �tness; then, the �tness
was calculated as follows:

ffitness = 1000� 1
MSEi + 1

; (3)

where:

MSEi =
1
m

mX
j=1

(Fij � Tj)2:

MSE represents the mean square error, m is the total
number of �tness cases, Fij is the value output by
the individual program i for the �tness case j (out
of m �tness cases), and Tj is the target value for the
�tness case j. For a perfect �t, Fij = Tj [31];
Step 4: Termination criterion
There are two termination criteria:
1. ffitness = fmax;
2. The maximum number of generations reached

2000.
If either criterion is satis�ed, stop; else, go to
Step 2 [31].

The 
owchart of this research is outlined in
Figure 3.

5. Results

In the �rst step, in order to determine the accuracy of
the �nite element modeling, the stress distributions for
edge and center cracked plates are shown. Quadratic
�nite element mesh is considered �ne enough to obtain
an exact solution. Rectangular �nite element mesh
was constructed with 0:02 � 0:02 elements in width
and height. Further, because of the importance of the
numerical integration in the vicinity of the crack tips,
sub-triangulation is conducted on elements, which are
located in the integration area. Figure 4 demonstrates
the stress distributions for cracked plates containing
edge and center cracks with di�erent inclinations.

5.1. SIFs calculation
This section is dedicated to making a comparison
between current numerical analysis using XFEM and
existing experimental-analytical solutions for evaluat-
ing SIFs. Details of the numerical calculations for edge-
crack plates are illustrated in Table 1.

In addition, Table 2 illustrates the computational
SIFs for center-crack plates under uniaxial tension.
Since previous experimental-analytical solutions in �-
nite plates are mostly in pure mode, results are shown
for the pure-mode problems.

5.2. The results of GEP method for edge-crack
problems

GEP method states an equation for predicting mode I
(KI) and mode II of fracture (KII) in edge-crack
problems based on width of domain (b), height of

Figure 3. The 
owchart of research methodology.
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Figure 4. Stress distribution for a plate containing an edge crack and center cracks.

Table 1. Stress intensity factors for single edge-crack plate under uniaxial tension.

Crack length
Analytical-

experimental
KI

Numerical KI Numerical KII
KI (numerical)=
KI (analytical)

0.1 0.6296 0.6251 0.0018 0.993
0.2 0.9082 0.9135 0.0025 1.006
0.3 1.1493 1.1547 0.0032 1.005
0.4 1.3846 1.3869 0.0038 1.001
0.5 1.6266 1.6258 0.0044 0.999
0.6 1.8825 1.8789 0.0051 0.998
0.7 2.1581 2.1535 0.0058 0.998
0.8 2.4591 2.4532 0.0008 0.998
0.9 2.7927 2.7905 0.0009 0.999
1.0 3.1674 3.1708 0.001 1.001
1.5 6.1407 6.1340 0.0161 0.999
2.0 13.1032 13.4695 0.0038 1.028

Table 2. Stress intensity factors for center-crack plate under uniaxial tension.

Crack length
Analytical-

experimental
KI

Numerical KI Numerical KII
KI (numerical)=
KI (analytical)

0.1 0.3979 0.3982 0.0000 1.001
0.2 0.5648 0.5434 0.0000 1.01
0.3 0.6943 0.6787 0.0000 0.976
0.4 0.8050 0.7919 0.0000 0.984
0.5 0.9043 0.8988 0.0000 0.994
0.6 0.9963 0.9810 0.0000 0.985
0.7 1.0838 1.0701 0.0000 0.987
0.8 1.1687 1.1566 0.0000 0.990
0.9 1.2528 1.2422 0.0000 0.992
1.0 1.3375 1.3278 0.0000 0.993
1.5 1.8153 1.7940 0.0000 0.988
2.0 2.4977 2.4517 0.0000 0.982
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Table 3. The Root Mean Square Error (RMSE) and R2

of training and validating the developed equations by Gene
Expression Programming (GEP) method for edge crack.

Parameter Training Validation
RMSE R2 RMSE R2

KI 94.22 0.988 68.29 0.976
KII 382.98 0.971 315.77 0.953

domain (h), length of crack (a), tension stress (�yy),
and shear stress (�xx). The number of considered
geometries and loading conditions and values is 2124 for
edge-crack problems. In this research, GEP method is
used from power, +, { , � and / functions. The number
of genes and chromosomes is 5 and 30, respectively,
and the size of head is 8. Results of the numerical
method (for 2124 states) were applied for the training
and validation of the developed equations by GEP
method (80% of data for training and 20% of data for
validation).

The signi�cance of these equations was deter-
mined by t-test. This test showed that there were
signi�cant relations between calculated KI and KII by
the numerical models and predicted KI and KII by
GEP method. The signi�cant level is 1% and p-values
are 0.7083 and 0.7813 for KI and KII, respectively.
Degrees of Freedom (Df) of the t-test is 4246. The
values of the test statistics are 0.3742 and �0:2777 for
KI and KII, respectively. In addition, the values of
standard deviation are 84.7846 and 9.7566 for KI and
KII, respectively. The RMSE and R2 of training and
validating the developed equations by GEP method are
illustrated in Table 3.

The developed equations by GEP method for
Mode one of fracture in edge-crack plates for the mixed
mode of fracture are as follows:
G1C8 = �2:28021990608709;

G1C5 = 1:28783142637904;

G2C9 = 4:84246639304335;

G2C1 = �4:95895260475478;

G2C4 = 7:80024855522324;

G3C3 = 3:20169682912687;

G3C2 = �0:878299089422313;

G3C1 = 1:36135438765005;

G4C5 = �9:95291498316064;

G5C1 = �0:772524115659732;

y = 0:0;

y =(�yy=(G1C8=(b

� realpow(realpow(a;G1C5); G1C5))));

y =y + ((((b+ b)� �yy) + realpow(a;G2C9))

=(realpow(h; a) + (G2C1 +G2C4)));

y =y + (a� ((G3C3

+ realpow(realpow(G3C1; b); G3C2))� �yy));

y=y+((d(4)=(d(1)+((G4C5=d(1))�d(2))))�d(3));

y=y+(a�realpow((((a=b)��yy)=(G5C1+b)); a));

KIpredict = y: (4)

Moreover, the developed equations by GEP method for
Mode two of fracture in edge-crack plates are as follows:

G1C2 = �0:634809827115886;

G1C4 = 3:24860522578786;

G2C6 = 7:96888487182226;

G2C5 = 7:9865730202641;

G2C3 = �2:82639945239753;

G2C0 = �0:579835990882018;

G3C5 = 0:82648295819544;

G3C7 = �7:66337909045983;

G4C0 = 93:0965971274657;

G4C6 = �10:8990646128312;

G5C1 = �0:766952253388981;

G5C2 = 3:13861613436109;

y = 0:0;

y =((((�xx � b)� �xx)�G1C2)

=realpow(exp(h); (G1C4 � a)));

y =y + ((((�xx=G2C5)=(G2C3=b))

=((h+G2C0)=a)) �G2C6);

y=y+((�xx�(((h+a)=G3C7)+(�xx=h)))�G3C5);

y =y + (realpow(G4C0; ((exp(�yy)�G4C6)

=realpow(b; �yy)))� �xx);
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y=y+((�xx=((b+G5C1)�(b�G5C2)))�exp(a));

KIIpredict = y: (5)

5.3. The results of GEP method for
center-crack problems

In this section, by conducting genetic programming
principles, a unique formula is inferred from the data
for an arbitrary center crack. In these problems, a cen-
ter crack with any inclination angle with respect to the
horizon up to 60 degrees is considered. In particular,
for a plate with a center crack, there are two tips in the
computational domain. The SIFs for both of the crack
tips are calculated by implementing the interaction
integral. The results demonstrated that the values of
the SIFs were the same for two crack tips. Therefore,
accordingly, the extracted GEP formula can be used
for each desired crack tip. GEP method expresses an
equation for the prediction of mode I (KI) and mode
II of fracture (KII) in center-crack problems based on
the width of domain (b), height of domain (h), length
of crack (2a=2), crack orientation angle (�), tension
stress (�yy), and shear stress (�xx). The number of
considered di�erent geometries and loading conditions
is 4710 for center-crack problems. In this research,
+;�;�;�; power; sqrt; exp; sin; cos mathematical func-
tions are utilized for GEP solution to generate a proper
formula for the prediction of both SIFs in center-crack
plates. By conducting a series of diagnostic analyses,
there are 6 genes and 30 chromosomes, respectively.
The size of head is selected to be 8. Results of
numerical simulations (for 4710 states) were applied
for training and validating the developed equations by
GEP method (80% of data for training and 20% of data
for validation).

Eventually, the signi�cance of the extracted equa-
tions was determined by the t-test. This test shows that
there are signi�cant relations between the calculated
KI and KII by the numerical models and the predicted
KI and KII by GEP method. Therefore, from the
implementation point of view, one can use the inferred
formula instead of the numerical simulation. The
signi�cance level is considered 1% and p-values are
0.2511 and 0.7917 for KI and KII, respectively. The
Degrees of Freedom (Df) for the t-test is 9420. The
values of the test statistic are �1:1476 and �0:2641 for
KI and KII, respectively. In addition, the values of
standard deviation are 6.9121 and 3.6832 for KI and
KII, respectively. The RMSE and R2 of training and
validating the developed equations by GEP method are
illustrated in Table 4.

Results demonstrate inferred functional relations
for estimating the fracture parameters. These results
generate an accurate mixed-mode fracture initiation.
Eq. (6) is obtained for KI prediction for any kind of

Table 4. The Root Mean Square Error (RMSE) and R2

of training and validating the developed equations by Gene
Expression Programming (GEP) method for center crack.

Parameter Training Validation
RMSE R2 RMSE R2

KI 396.93 0.957 382.69 0.951
KII 504.81 0.928 467.14 0.909

center-crack plates:

G2C9 = 0:757119862771529;

G3C9 = �4:54871208075198;

G3C5 = 1:27180460798975;

G3C3 = 5:29529709768975;

G4C3 = 1:41314424963903;

G4C2 = �3:84813610579428;

G5C2 = 0:397656178472243;

G5C9 = �3:15164718252734;

G5C4 = �1:22101216812634;

G6C7 = 0:635492167409079;

y = 0:0;

y = (cos(((cos(b)� (�xx=h)) + cos(a)))� a);

y =y + realpow((sin((a=G2C9))

+ ((�yy + �yy)� a)); cos(�));

y =y + sin(exp((G3C9

� (cos(realpow(G3C5; G3C3))�(a+ �xx)))));

y =y + cos(exp((�

+ realpow((exp(G4C2)=h); (G4C3� �)))));
y =y + ((�xx � (a�G5C2))

� (cos(G5C9)= cos(G5C4)));

y = y + sin((a� sin((h� exp((G6C7� �xx))))));

KIpredict = y: (6)

Further, Eq. (7) is inferred from the GEP solution to
predict KII of center-crack plates. In the presented
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relations, the unit of crack inclination angles, �, is
considered in radian.

G2C1 = 9:12337040144215;

G2C0 = 8:47272255623035;

G3C6 = 0:417246421040969;

G3C5 = 2:90015291132003;

G4C6 = 4:5951719718009;

G4C3 = �544:124293487823;

G5C3 = �8:96053060670797;

G5C7 = �4:82549630761725;

G5C5 = �7:21011415951111;

y = 0:0;

y = ((cos(b� sin(�yy)))� a)� a;
y =y + sin((((a� �)� (�yy=G2C1))

+ (�yy � (G2C0 � b))));
y=y+((sin(sin(((G3C5��)�G3C6)))�a)��yy);

y =y + (cos(G4C6)� (cos(realpow(�yy; �))

� sin((b�G4C3))));

y =y + (realpow(exp((a=G5C5)); G5C3)

=(sin(h) +G5C7));

y=y+exp((a�realpow(cos(exp(sin(b))); �yy)));

KIIpredict = y: (7)

The main objective of this research is to extract
appropriate equations. These extracted equations can
be used for determining characteristics of edge and
center cracks, and it is not necessary to apply numerical
models following their extraction.

6. Conclusion

In this research work, unique formulas in the mixed-
mode condition were inferred from the data for pre-
dicting fracture parameters. Data were generated by
the numerical method. The Extended Finite Element
Method (XFEM) was used to produce more than 6500
input data. In fact, by combining the interaction

integral with the XFEM, the mixed-mode Stress In-
tensity Factors (SIFs) were calculated. Models consist
of edge-crack plates and center-crack plates. Genetic
programming was utilized to �nd appropriate functions
for Modes one and two of fracture parameters. R-
square and correlation coe�cients were in a condition
that demonstrated the signi�cant relationships between
predicted and numerical SIFs. Further, in order
to examine the functions, the T -test was done on
the results. T -test results proved the existence of a
correlation between input data and the output results.
Therefore, this study used the suggested functions
instead of numerical solutions to estimate the fracture
initiation.
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