Soret and Dufour effects on doubly diffusive convection of nanofluid over a wedge in the presence of thermal radiation and suction

Document Type: Article

Authors

1 Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia

2 Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia

3 Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia

Abstract

This paper is devoted to investigate the influences of thermal radiation, Dufour and Soret effects on doubly diffusive convective heat transfer of nanoliquid over a wedge in the presence of wall suction. The governing equations are transformed to nonlinear ordinary differential equations using similarity transformation. The resulting system is solved numerically using fourth-order Runge-Kutta-Gill method with shooting technique and Newton-Raphson method. The solutions are expressed in terms of velocity, temperature, solutal concentration and volume fraction profiles. The effects of pertinent parameters entering into the problem such as wedge angle, thermal radiation, Brownian motion, thermophoresis, Soret and Dufour numbers on the skin friction coefficient, local Nusselt number and local Sherwood number are discussed in detail.

Keywords

Main Subjects