Refrences:
1.Trawinski, Z., Wojcik, J., Nowicki, A., Olszewski, R., Balcerzak, A., Frankowska, E., Zegadlo, A., and Rydzynski, P. Strain examinations of the left ventricle phantom by ultrasound and multislices computed tomography imaging", Biocyber. Biomed. Eng., 35, pp. 255-263 (2015).
2. Bukala, J., Kwiatkowski, P., and Malachowski, J. Numerical analysis of stent expansion process in coronary artery stenosis with the use of non-compliant ballon", Biocyber. Biomed. Eng., 36, pp. 145-156 (2016).
3. Eshghi, S.H., Rajabi, H., Darvizeh, A., Nooraeefar, V., Sha_ei, A., Mirzababaie Mosto_, T., and Monsef, M. A simple method for geometric modeling of biological structures using image processing technique", Sci. Iran., 23(5), pp. 2194-2202 (2016). 4. Przytulska, M., Gierblinski, I., Kuliusz, J., and Skoczylas, K. Quantitative examination of liver tissue ultrasound elastograms", Biocyber. Biomed. Eng., 31(4), pp. 75-85 (2011). 5. Zanetti, M.E., Terzini, M., Mossa, L., Bignardi, C., Costa, P., Audenino, A.L., and Vezzoni, A. A structural numerical model for the optimization of double pelvic osteotomy in the early treatment of canine hip dysplasia", Vet. Comp. Orthop. Traumatol., 4, pp. 1-9 (2017). Z. Matin Ghahfarokhi et al./Scientia Iranica, Transactions B: Mechanical Engineering 26 (2019) 3262{3270 3269 6. Kemper, A.R., Santago, A.C., Stitzel, J.D., Sparks, J.L., and Duma, S.M. E_ect of strain on the material properties of human liver parenchyma in uncon_ned compression", ASME J. Biomech. Eng., 135, pp. 1-8 (2013). 7. Rashid, B., Destrade, M., and Gilchrist, M.D. Mechanical characterization of brain tissue in simple shear at dynamic strain rates", J. Mech. Behav. Biomed. Mater., 28, pp. 71-85 (2013). 8. Abbasi, A.A., Ahmadian, M.T., Alizadeh, A., and Tarighi, S. Application of hyperelastic models in mechanical properties prediction of mouse oocyte and embryo cells at large deformations", Sci. Iran., 25(2), pp. 700-710 (2018). 9. Quapp, K.M. and Weiss, J.A. Material characterization of human medial collateral ligament", ASME J. Biomech. Eng., 120, pp. 757-763 (1998). 10. Wang, X., Schoen, J.A., and Rentschler, M.E. Aquantitative comparison of soft tissue compressive viscoelastic model accuracy", J. Mech. Behav. Biomed. Mater., 20, pp. 126-136 (2013). 11. Shari_ Sedeh, R., Ahmadian, M.T., and Janabi- Shari_, F. Modeling, simulation, and optimal initiation planning for needle insertion into the liver", ASME J. Biomech. Eng., 132, pp. 1-11 (2010). 12. Matin Ghahfarokhi, Z., Moghimi Zand, M., and Salmani Tehrani, M. Analytical solution and simulation of the liver tissue behavior under uniaxial compression test", Modares Mechanical Engineering, 16(9), pp. 47-56 (1395) (in Persion). 13. Matin Ghahfarokhi, Z., Salmani Tehrani, M., Moghimi Zand, M., and Mahzoon, M. A computational study on the e_ect of di_erent design parameters on the accuracy of biopsy procedure", J. A. MECH., 46(2), pp. 221-231 (2015). 14. Troyer, K.L., Shetye, S.S., and Puttlitz, C.M. Experimental characterization and _nite element implementation of soft tissue nonlinear viscoelasticity", ASME J. Biomech. Eng., 134, pp. 1-8 (2012). 15. Zanetti, E.M., Perrini, M., Bignardi, C., and Audenino, A.L. Bladder tissue passive response to monotonic and cyclic loading", Biorheol., 49, pp. 49-63 (2012). 16. Natali, A.N., Audenino, A.L., Artibani, W., Fontanella, C.G., Carniel, E.L., and Zanetti, E.M. Bladder tissue biomechanical behavior: Experimental tests and constitutive formulation", J. Biomech., 48, pp. 3088-3096 (2015). 17. Oaz, H. A biomechanical comparison between tissue sti_ness meter and shore type 00 durometer using fresh human fetal membrane cadavers", Biocyber. Biomed. Eng., 36, pp. 138-144 (2016). 18. Khajehsaeid, H., Baghani, M., and Naghdabadi, R. Finite strain numerical analysis of elastomeric bushings under multi-axial loadings: a compressible viscohyperelastic approach", Int. J. Mech. Mat. Des., 9, pp. 385-399 (2013). 19. Naghdabadi, R., Baghani, M., and Arghavani, J. A viscoelastic constitutive model for compressible polymers based on logarithmic strain and its _nite element implementation", Finite Elem. Anal. Des., 62, pp. 18-27 (2012). 20. Karimi, A., Navidbakhsh, M., and Beigzadeh, B. A visco-hyperelastic constitutive approach for modeling polyvinylalcohol sponge", Tissue Cell, 46, pp. 97-102 (2014). 21. Tirella, A., Mattei, G., and Ahluwalia, A. Strain rate viscoelastic analysis of soft and highly hydrated biomaterials", J. Biomed. Mat. Res., 102A(10), pp. 3352-3360 (2014). 22. Miller, K. Constitutive model of brain tissue suitable for _nite element analysis of surgical procedures", J. Biomech., 32, pp. 531-537 (1999). 23. Pipkin, A.C. and Rogers, T.G. A nonlinear integral representation for viscoelastic behavior", J. Mech. Phys. Solids., 16, pp. 59-72 (1968). 24. Rajagopal, K.R. and Wineman, A.S. Response of anisotropic nonlinearly viscoelastic solids", Math. Mech. Solids., 14, pp. 490-501 (2009). 25. Holzapfel, G.A., Nonlinear Solid Mechanics. A Continuum Approach for Engineering, pp. 205-256, Wiley, UK (2000). 26. Holzapfel, G.A. and Gasser, T.C. A viscoelastic model for _ber-reinforced composites at _nite strains: continuum basis, computational aspects and applications", Comput. Meth. Appl. Mech. Eng., 190, pp. 4379-4403 (2001). 27. Lu, Y.T., Zhu, H.X., Richmond, S., and Middleton, J. A visco-hyperelastic model for skeletal muscle tissue under high strain rates", J. Biomech., 43, pp. 2629- 2632 (2010). 28. Limbert, G. and Middleton, J. A constitutive model of the posterior cruciate ligament", Med. Eng. Phys., 28, pp. 99-113 (2006). 29. Laksari, k., Sadeghipour, K., and Darvish, K. Mechanical response of brain tissue under blast loading", J Mech Behav Biomed Mater, 32, pp. 132-144 (2014). 30. Mansouri, M. and Darijani, H. Constitutive modeling of isotropic hyperelastic materials in an exponential framework using a self- contained approach", Int. J. Solids Struct., 51(25), pp. 4316-4326 (2014). 31. Khan, A.S., Lopez-Pamies, O., and Kazmi, R. Thermo-mechanical large deformation response and constitutive modeling of viscoelastic polymers over a wide range of strain rates and temperatures", Int. J. Plas., 22, pp. 581-601 (2006). 32. Khan, A.S. and Lopez-Pamies, O. Time and temperature dependent response and relaxation of a soft polymer", Int. J. Plas., 18, pp. 1359-1372 (2002). 33. Limbert, G. and Middleton, J. A transversely isotropic viscohyperelastic material application to the modeling of biological soft connective tissues", Int. J. Solis Struct., 41(15), pp. 4237-4260 (2004).