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Abstract. Predicting the nonlinear response of biological tissues is a challenging issue
due to strain rate- (short-term) and time-dependent (long-term) nature of its response.
While many of the tissue properties have already been extensively examined, some are
left unnoticed, such as dependence of the stress-relaxation behavior on the strain levels.
In this paper, a hyperviscoelastic constitutive model is derived within the integral form
presented by Pipkin and Rogers model to remove this limitation. In the suggested
model, the hyperelastic and short-term viscous parts are represented by a suitable strain
energy function. The long-term viscous function includes the deformation history, which is
expressed through a tensorial-relaxation function and has not been considered elsewhere.
The constitutive model involves a number of material parameters. The values of those
are identi�ed from experimental data for Adiprene-L100 as a tissue-equivalent material.
Parameters appearing in constitutive law are estimated by �tting the model with the
experimental data. It is assumed that the tissue phantom is slightly compressible, isotropic,
and homogenous. The obtained results indicate that the presented model can describe the
nonlinearity, strain rate- (short-term) and time-dependent (long-term) e�ects of materials.
The validation of the model is investigated, and very good agreement between the proposed
model and the experimental data is shown.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Over the last two decades, there has been a notable
progress in the �elds of diagnostic procedures such
as planning of computer-assisted surgical treatment,
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image-guided surgery, and medical robotic technol-
ogy [1-5]. In all of these cases, the knowledge of
mechanical properties of soft tissues is crucial for
modeling the nonlinear behavior of tissues. A vast
array of investigations has been performed to determine
the behavior of biological tissues from a theoretical
viewpoint and by experimental investigations. For
example, Kemper et al. [6] carried out a total of
36 uniaxial compression experiments on human liver
parenchyma within 48 hours of death at four rates
ranging from 0.012-10.708 s�1. They showed that the
human liver response was both nonlinear, and that
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the dependence on the strain rate and failure strain
decreased with the increased loading rate, while failure
stress signi�cantly increased. Rashid et al. [7] carried
out experimental tests on various loading cases to
determine a suitable hyperelastic constitutive model
to predict the mechanical properties of porcine brain
tissue by using a large sample shear test. The obtained
results indicate that the Mooney-Rivlin model has a
good capability to predict the linear experimental shear
data, as observed at strain rates used in the tests
and the Ogden model, which is responsible for both
linear and nonlinear experimental shear data. Abbasi
et al. [8] used the inverse �nite element method and an
optimization algorithm to �nd a suitable hyperelastic
model for the characterization of material properties
of mouse oocyte cell and mouse embryo cell. In this
regard, they used di�erent hyperelastic models such
as Ogden, Mooney-Rivlin, Arruda-Boyce, etc. They
found that Ogden model and Mooney-Rivlin model
were suitable for describing mouse oocyte cell and
mouse embryo cell, respectively. In addition, the
material properties of the human Medial Collateral
Ligament (MCL) were studied by Quapp and Weiss [9].
They performed tensile tests along and transverse to
the collagen �ber direction on the obtained specimens
of ten human cadaveric MCLs. The experimental data
were used to evaluate the ability of three hyperelastic
constitutive models. These were referred to as the
\one-coe�cient and two-coe�cient" models proposed
by Weiss and the \Lanir" material model to describe
the material behavior of human MCL. The results
of their investigations indicate that the longitudinal
behavior of MCL can well be described by three
constitutive models. However, the ability of these
models to represent the transverse behavior varies. The
performed investigations indicate that a hyperelastic
constitutive model can describe the nonlinear behavior
of biological tissues. However, the hyperelastic models
can describe any time- or rate-dependent and multi-
phasic behavior. Hereupon, the hyperelastic models
have been extended, and viscoelastic models have been
presented by researchers to consider such e�ects. Many
studies have been made on these models. Among them,
Wang et al. [10] characterized the stress-relaxation
behavior of fresh porcine liver and spleen with a
Double Maxwell-arm Wiechert (DMW) model. Shari�
Sedeh et al. [11] used a quasi-linear hyper-viscoelastic
constitutive model for describing the response of bovine
liver tissue at a uniaxial compression test. This theory
has also been used for more studies on tissue behavior
under simple loading and needle insertion (see [12,13]).
The quasi-linear theory is composed of two contribu-
tions. Nonlinear behavior of tissues is modeled with a
hyperelastic contribution, and a linear time-dependent
component is considered to describe the viscoelastic
behavior [14-16]. However, the widespread use of quasi-

linear viscoelastic theory shows its popularity, and
the linear time-dependent feature of this theory limits
its applicability for describing strain-dependent stress-
relaxation behavior [14].

Further to that, despite a signi�cant amount
of research carried out to study the body organs,
the preparation of experimental samples and the de-
termination of the material properties of biological
tissue is a complex problem due to their nature [17];
therefore, the use of organ-equivalent materials is
a usual method. The highly nonlinear and time-
dependent behavior of polymeric materials has made it
desirable to choose these materials over the biological
tissue for using the biomaterial areas [18-20]. For
instance, Tirella et al. [21] derived the viscoelastic
parameters using the epsilon dot method for soft
hydrated biomaterials. To this end, they performed
several compression tests on the polydimethlsiloxane
and gelatin samples with di�erent strain rates. Then,
the obtained dataset was used for analyzing and es-
timating the viscoelastic parameters. Moreover, they
determined the viscoelastic response of porcine liver
by this procedure, and showed that hepatic tissue
constitutive parameters were quanti�ed without using
any pre-stress and before the onset of time-dependent
degradation phenomena.

As mentioned above, whereas many of the tissue
properties have already been extensively examined,
some are left unnoticed, such as the dependence of
the stress-relaxation behavior on the strain. Thus,
a more general relation is necessary to remove this
limitation. The objective of this paper is to develop
a new nonlinear hyper-viscoelastic constitutive model
that describes the response of compressible, isotropic,
and homogenous tissue for the compression and stress-
relaxation tests at di�erent strain levels. The model is
composed of hyperelastic and viscous parts. The hyper-
elastic part is represented by the strain energy function,
and viscous stress is derived by two strain rate- (short-
term) and time-dependent (long-term) parts. More
details of performed investigations are discussed in the
following sections.

2. Methods and materials

Based on the nonlinearity, strain rate- and time-
dependent responses of soft tissue, it is assumed that a
nonlinear compressible isotropic hyperviscoelastic con-
stitutive model is suitable for describing the behavior of
isotropic and homogeneous tissues [11,22]. The model
is derived within the integral form presented by Pipkin
and Rogers [23] and developed by Rajagopal and Wine-
man [24]. Most importantly, the model enables the
prediction of the nonlinearity, strain rate-dependence,
and the dependence of the stress-relaxation response at
strain levels.
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2.1. Hyperviscoelastic constitutive model
development

In this section, a nonlinear constitutive model is con-
structed to predict the tissue behavior. The model
consists of two hyperelastic and viscous parts. The
hyperelastic part is formulated on the basis of a strain
energy function decoupled into isochoric and volumet-
ric parts. The viscous part is also represented by two
parts capturing the strain rate (short-term) and time-
dependent (long-term) behavior. Short-term behavior
is described by a strain energy function, which presents
the dissipation of energy and long-term behavior based
on the strain derived with the integral form. The
proposed constitutive model can be generally written
at any time, t, as follows [24]:

� (t) = �pI + F (t)8<:R [C (t) ; 0] +
tZ

0

@R [C (�) ; t� � ]
@ (t� �)

d�

9=;FT (t) ;
(1)

where �(t) and R[C(�); t � � ] are the Cauchy stress
tensor and a tensorial-relaxation function, respectively.

Since biological tissues behave di�erently in bulk
and shear loading, it is bene�cial to split the defor-
mation gradient tensor into volumetric and isochoric
parts [25]. Thus, Eq. (1) can be rewritten as follows:

� (t) =F (t)

8<:R
��C (t) ; 0

�
+

tZ
0

@R
��C (�) ; t� ��
@ (t� �)

d�

9=;
FT (t) ; (2)

where C = FTF is the modi�ed right Cauchy-Green
deformation tensor, while F = J (�1=3)F is the cor-
responding modi�ed deformation gradient tensor [26].
R
��C (�) ; t� �� is suggested through:

R
��C (�) ; t���=S

h
(1�� (�)) e�(t��)�(�; _�)+� (�)

i
;
(3)

where �(�) and �(�; _�) are the functions of the stretch
and stretch rate. In addition, second Piola-Kirchho�
stress tensor, S, is calculated from the strain energy
function ( ) expressed as follows [26,27]:

 =  vol (J) +  iso
��C�+  visco

�
_�C
�
: (4)

In Eq. (2), it is assumed that no deformation occurs
prior to time t = 0, and F(t)R

��C (�) ; 0
�
FT(t) can

be considered as the instantaneous stress at time t.
Moreover, it is noted that the reference con�guration
is a stress-free con�guration, and R

��C (�) ; 0
�

is zero
in the absence of deformation.

In Eq. (3), S can be transformed into hyperelastic
and viscous parts [25], as given below:

S = Se + Svisco = (Svol + Siso) + Svisco; (5)

with:

Svol = JpC�1; p =
d vol (J)

dJ
; (6)
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= 2
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!
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Se represents the hyperelastic part, whereas invariants
of the modi�ed right Cauchy-Green deformation tensor
�I� (� = 1; 2) are expressed by Eq. (9) [28]:

�I1 = tr
��C�

�I2 =
1
2

h�
tr�C

�2 � tr�C2
i
: (9)

Here, in order to obtain good �tting with the ex-
perimental data, di�erent models are investigated, as
shown in the following equations [25,28-30].

The isochoric energy part,  iso, is expressed as a
function of (�I1�3) and (�I2�3) that ensures the strain-
zero energy for the zero strain, as shown in Eqs. (10) to
(12), which are known as Mooney-Rivlin, Generalized
Mooney-Rivlin, and Mansouri models, respectively:

 iso = c10
��I1 � 3

�
+ c01

��I2 � 3
�
; (10)

 iso =c10
��I1 � 3

�
+ c01

��I2 � 3
�

+ c11
��I1 � 3

� ��I2 � 3
�
; (11)

 iso = A
�
em(�I1�3) � 1

�
+B

�
en(�I2�3) � 1

�
; (12)

where cij , A, B, m, and n are the material parameters,
which must be experimentally determined. The volu-
metric and short-term viscous energy parts are given
as follows:

 vol =
k
2

(J � 1)2; (13)

 visco =
�
4
��I1 � 3

� �J2: (14)

�J2 is the invariant of _�C and de�ned as follows:

�J2 =
1
2

�
I : _�C

2
�
: (15)
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2.2. Numerical implementation of model
The advantage of the proposed model in Section 2.1
is that it can be simply used for numerical imple-
mentation. For this purpose, the material parameters
appearing in the constitutive law need to be identi�ed
�rst with a uniaxial compression test.

2.2.1. Stress-stretch relationship in one dimension
Assuming that a cylindrical sample of isotropic and ho-
mogeneous tissues is only compressed in one direction,
e.g., z-direction, the deformation gradient tensor, F,
can be written as follows:

F =

24��� 0 0
0 ��� 0
0 0 �

35 : (16)

The modi�ed right Cauchy-Green deformation tensor,
�C, is as follows:

�C =

264��2�2�
3 0 0

0 �
�2�2�

3 0
0 0 �

4+4�
3

375 : (17)

Therefore, the invariants are calculated as follows:

�I1 = 2�
�2�2�

3 + �
4+4�

3 ;

�I2 = �
�4�4�

3 + 2�
2+2�

3 : (18)

Next, the non-zero component of the Cauchy stress
tensor during a compression test at time t = � has
the following form:

�z (t) = Fz (t)Sz (t)FT
z (t) ; (19)

where the component of the second Piola-Kirchho�
stress tensor, Sz(t), which de�nes the stress in com-
pression loading, can be computed through Eq. (5).

In addition, the stress component of the relax-
ation test corresponding to the loading direction can
be calculated through Eqs. (2) and (3), as given below:

�z (t) = �Sz (t)�
h
(1� � (�)) e�t�(�; _�) + � (�)

i
:
(20)

Details of the calculation Sz(t) for the three strain
energy functions mentioned in Section 2.1 will be
obtained in Appendix.

2.3. Experimental data
To predict the nonlinear behavior of soft tissue via
the developed model, material parameters must be
determined. The presented model is investigated
for Adiprene-L100, a polyurethane-based rubber, as
a tissue phantom. Material parameters of the hy-
perviscoelastic constitutive model are identi�ed with

experimental data reported by Khan et al. [31]. Con-
sidering that the details of experimental methods for
these data are described in [31,32], they will only be
briey discussed. Cylindrical samples from Adiprene-
L100 were investigated under the uniaxial compression
and stress-relaxation tests. Compression loadings were
performed in a wide range of strain rates (10�5 � _" �
5000 s�1) up to a true strain level of 55%. A stress-
relaxation test was also performed under a loading
strain rate of 1 s�1. During these tests, the samples
were loaded up to 5%. Next, the displacement of a
loading plane was held constant for 2 hours, and the
behavior of the material was recorded.

3. Results

3.1. Experimental results
The experimental data outlined in [31] present the
true stress-true strain and true stress-time curves from
uniaxial compression at �ve di�erent strain rates and
a stress-relaxation test, as shown in Figures 1 and 2.

Figure 1. True stress-true strain curves for uniaxial
compression test at di�erent levels of strain rates [31].

Figure 2. True stress-time curves for stress-relaxation
test at di�erent levels of strain at a strain rate of
1 s�1 [31].
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Figure 1 shows that stress increases with an increase
in strain rates, as has been reported for the other
polymers in [18,20]. The linking of smaller units or
monomers results in the phenomenon. At a lower load-
ing rate, monomers are recon�gured, and molecular
chains can follow the direction of loading. However,
at higher rates of loading, because the decentralization
and the o�-slip between the chains cannot follow the
rate of loading at the same speed, the sti�ness of the
material increases. This data was used to estimate
the material parameters that appeared in the proposed
constitutive model.

3.2. Estimated material parameters
3.2.1. Hyperelastic material parameters
To describe the nonlinear response of tissue phantom,
a strain energy function needs to be chosen for the
best �tting with the experimental data. Thus, the
hyperelastic material parameters for three strain en-
ergy functions, nominated in Section 2.1, are obtained.
The parameters are estimated by �tting Eq. (19),
assuming � = 0, with uniaxial compression data by
mathematical software at a quasi-static strain rate
(10�5s�1), as tabulated in Table 1. In Figure 3,
the predicted results of di�erent models of the strain
energy function and those obtained by experimental
data are displayed. Here, true strain is de�ned as
the instantaneous elongation per unit length of the
specimen and true stress is calculated using Eq. (19).
It is observed that the Generalized Mooney-Rivlin
model matches quite well with experimental quasi-
static uniaxial compression data. This strain energy
function is chosen to describe the true stress-true strain
response of tissue-equivalent material under a static
condition. As shown in a research study by Khan and
Lopez-Pamies [32], � = 0:49 is obtained for the tested
material.

3.2.2. Viscous material parameters
With the hyperelastic parameters determined, the pa-
rameter �, considering viscous e�ect in the constitutive
model, can be estimated by �tting Eq. (19) with true
stress-true strain curves at strain rates of 10�4, 10�2,

1, and 5000 s�1 (Figure 4). The obtained viscous
parameters for di�erent strain rates are mentioned in
Table 2.

In the next step, by using estimated hyperelastic
and viscous parameters, the behavior of tissue phan-
tom (Adiprene-L100) can be predicted in the uniaxial
compression test.

Figure 3. The true stress-true strain curves of uniaxial
compression test for tissue phantom at a quasi-static
strain rate.

Figure 4. Experimental data and numerical results of
uniaxial compression test at strain rates equal to 0.0001,
0.01, 1, and 5000 s�1.

Table 1. Material parameters obtained by the identi�cation of the constitutive models.

Mooney-Rivlin
model

c10 = �2:50492e7 (Pa),
c10 = �1:32242e6 (Pa)

k = 4:3552e9

Mansouri model
A = 1409040 (Pa),
B = �3366060 (Pa),
m = �2, n = 0:221163,

k = 100e6

Generalized
Mooney-Rivlin

model

c10 = �7:37708e7 (Pa),
c01 = �2:62259e7 (Pa),
c11 = 1:71906e6 (Pa)

k = 1.88022e10
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Table 2. Viscous parameter for di�erent strain rates.

_" (s�1) 0.0001 0.01 1 5000
� (Pa.s) 1.78944e9 4.15062e7 853319 11077

3.3. Stress-relaxation response
In this section, experimental data from the stress-
relaxation test in constant strain ranging from 9.3%
to 59.1% are collected in Figure 2. The whole data are
obtained at a strain rate of 1 s�1. Eq. (20) is separately
�tted with experimental data in di�erent strain per-
centages of 19.2%, 28.7%, and 59.1% by the nonlinear
least-squares algorithm (Figure 5). Then, values of
� and � parameters are determined. Accordingly, by
increasing �, � increases, while � tends to decrease.

Next, a suitable curve is �tted with the obtained
values (Figures 6 and 7). Considering the performed
investigations, the best functions of � and � are as
follows:

� (�) = a�2 + b�+ c; �
�
�; _�

�
= _� (a�+ b) :

In such a case, the dependence of the tensorial-
relaxation function at the strain levels can be obtained.

Figure 5. Stress-relaxation curves at strain equal to
9.3%, 19.2%, 28.7%, and 59.1%.

Figure 6. Value of �(�) versus stretch.

Figure 7. Value of �
�
�; _�

�
at a strain rate of 1 s�1

versus stretch.

4. Discussions

In this study, a new nonlinear hyperviscoelastic con-
stitutive model was developed in order to describe
the behavior of isotropic and homogeneous soft tissues
within the integral framework presented by Pipkin and
Rogers. The model was constructed based on the
hyperelastic and viscous parts. The hyperelastic part
was represented by the strain energy function. The
strain energy function was additionally decoupled into
isochoric and volumetric sections. Moreover, viscous
stress was derived using two short-term and long-term
parts. The short-term viscous function characterizes
the strain rate sensitivity, while the long-term viscous
function considers the deformation history, which is
formulated through a nonlinear integrand. The hyper-
elastic model is not able to account for predicting the
relaxation data, and quasi-linear viscoelastic models
presented for soft material fail to describe the material
behavior during stress-relaxation at di�erent strain
levels. However, this limitation was removed in the
presented model by introducing an integrand based
on the strain level using the functions of �(�) and
�
�
�; _�

�
.

The constitutive model involves a number of
material parameters. The values of those are iden-
ti�ed from experimental data for Adiprene-L100 as
a tissue-equivalent material. The elastic parameters
are estimated by curve-�tting the compression data
of the test at a quasi-static strain rate. To achieve
this purpose, the Generalized Mooney-Rivlin model
was used as the best-�tting on the experimental data
associated with the quasi-static strain rate to describe
the isochoric stress part of the uniaxial compression
response of material. Moreover, with the existence
of the parameter in the volumetric part of the strain
energy function, the compressibility of the material can
be taken into account.

In addition, the stress data of higher strain load-
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ing rate are used to determine the viscous parameter,
�. These values seem high (Table 2). The very
high values for viscous parameters can be found in
the literature [28,33]. The model cannot determine a
certain viscous parameter at all strain rates because the
amplitude of the strain rate range is very wide. There-
fore, we �t the constitutive relation on the experimental
data of the compression test for each strain rate. In
the last step of determining the material parameters,
the functions of �(�) and �

�
�; _�

�
are captured by

the stress-relaxation data. Figures 4 and 5 show the
experimental data and obtained numerical results by
the presented model. It is seen that the presented
model can follow the experimental data.

In order to verify the constitutive model, values
for � and � are estimated by means of substituting
the stretch corresponding into strain, " = 9:3%, in the
represented functions of �(�) and �

�
�; _�

�
, which are

shown in Figures 6 and 7. Then, the calculated stress
at this strain level is plotted in Figure 5 using Eq. (20).
Note that the values of the parameters c10, c01, k, and
� are �xed to those estimated by �tting Eq. (19) with
uniaxial compression data. It is seen that the predicted
results agree well with the experimental ones.

The prediction of tissue mechanical behavior by
the proposed model can be utilized in the clinical
investigations and simulations of tissue/tool interaction
in the robotic surgery system. The model can also be
used to educate young surgeons by modeling a tissue
surgery. Interested readers can extend this model
to simulate the heat transfer during laser therapy in
patients with advanced cancer.

5. Conclusions

In this study, based on the integral framework and
using the short- and long-term viscous functions, a
nonlinear hyperviscoelastic constitutive model was de-
veloped to characterize the mechanical behavior of
isotropic tissue-equivalent materials. Here, Adiprene-
L100 was chosen as the tissue-phantom, and the exper-
imental data related to this polymeric material were
applied to determine the model parameters.

Even though the results obtained through the nu-
merical implementation of the compression and stress-
relaxation tests for di�erent strain rates and strain
levels clearly indicated that the model could describe
nonlinearity and the strain-dependent stress-relaxation
response of tissue phantom, there is good agreement
between the predicted results and experimental data.
However, the constitutive model is subject to several
limitations. First, the material parameters should be
estimated by experimental data of di�erent loading
tests such as multi-axial and shear loading, since a
model must be a practical for all loading cases. Second,

considering that many tissues are anisotropic and non-
homogeneous, the proposed constitutive model should
be extended to describe their behavior.

Nomenclature

P Lagrange multiplier associated with
incompressibility

C Right Cauchy-Green deformation
tensors

_�C Time rate of �C
F Deformation gradient tensor
J Determinant of F
k Material parameter
S Second Piola-Kirchho� stress tensor

Greek Letters

_" Strain rate, s�1

� Material parameters, Pa s
� Stretch along the loading direction
� Poisson's ratio

Subscript and superscripts

vol Volumetric part
iso Isochoric part
visco Viscous part
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Appendix

Simpli�cation of formulation Sz(t) for the three
strain energy functions

In this section, the stress Sz(t) is formulated by
substituting Eqs. (10) to (14) into Eqs. (5) to (8), for
three identi�ed strain energy functions in Section 2.
(i) Mooney-Rivlin model:

Sz(t) = �2�
�
k
�
�(1�4�) � �(�2�)

�
+

4
3
c10

�
�
�2+4�

3 � ��2�8�
3

�
+

4
3
c01

�
�
�4+2�

3 � ��10�4�
3

�
+ �

�2+4�
3

�
_�(�I1 � 3)

�
�(4 + 4�)

6
�

1+4�
3

��
6
��2

��4�4�
3

�
�5�8�

3

+
4+4�

3
�

7+4�
3

����
: (A.1)

(ii) Generalized Mooney-Rivlin model:
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(iii) Mansouri model:
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