References
1. IBC, International Building Code. International Code
Council, USA (2003).
2. Jeng, V. and Tzeng, W.L. Assessment of seismic
pounding hazard for Taipei city", Engineering Structures,
22(5), pp. 459-471 (2000).
3. Basoz, N.I., Kiremidjian, A.S., King, S.A., and Law,
K.H. Statistical analysis of bridge damage data from
the 1994 Northridge, CA California", Earthquake Spectra,
15(1), pp. 25-53 (1999).
4. Hart, G.C. and Jain, A. Performance-based wind
evaluation and strengthening of existing tall concrete
buildings in the Los Angeles region: dampers, nonlinear
time history analysis and structural reliability",
The Structural Design of Tall and Special Buildings,
23(16), pp. 1256-1274 (2014).
5. Sassi, M.A. Nonlinear dynamic analysis of wind
turbine towers subject to design wind and seismic
loads", PhD Thesis, Colorado School of Mines, USA
(2016).
6. Henrych, J., Finite Models and Methods of Dynamics
in Structures, Elsevier, The Netherlands (1990).
7. Argyris, J. and Mlejnek, J.P., Dynamics of Structures,
Elsevier, The Netherlands (1991).
8. Soroushian, A. New methods to maintain responses'
convergence and control responses' errors in the analysis
of nonlinear dynamic models of structural systems",
PhD Thesis, University of Tehran, Iran (2003) (in
Persian).
9. Wriggers, P., Computational Contact Mechanics, John
Wiley & Sons, USA (2002).
10. Hughes, T.J.R., Pister, K.S., and Taylor, R.L.
Implicit-explicit nite elements in nonlinear transient
analysis", Computer Methods in Applied Mechanics
and Engineering, 17/18(1), pp. 159-182 (1979).
11. Chung, J. and Hulbert, G.M. A family of singlestep
Houbolt time integration algorithms for structural
dynamics", Computer Methods in Applied Mechanics
and Engineering, 118(1-2), pp. 1-11 (1994).
12. Chopra, A.K., Dynamics of Structures: Theory and
Application to Earthquake Engineering, Prentice-Hall,
USA (1995).
13. Soroushian, A., Wriggers, P., and Farjoodi, J. On
practical integration of semi-discretized nonlinear
equations of motion. Part 1: reasons for probable
instability and improper convergence", Journal of
Sound and Vibration, 284(3-5), pp. 705-731 (2005).
14. Mohraz, B., Elghadamsi, F.E., and Chang, C.J.
An incremental mode superposition for non-linear
dynamic analysis", Earthquake Engineering and Structural
Dynamics, 20(5), pp. 471-481 (1991).
15. Nickell, R.E. Nonlinear dynamics by mode superposition",
Computer Methods in Applied Mechanics and
Engineering, 7(1), pp. 107-129 (1976).
16. Rashidi, S. and Saadeghvaziri, M.A. Seismic modeling
of multispan simply-supported bridges using Adina",
Computers & Structures, 64(5-6), pp. 1025-1039
(1997).
17. Xie, Y.M. and Steven, G.P. Instability, chaos, and
growth and decay of energy of time-stepping schemes
for nonlinear dynamic Equations", Communications in
Numerical Methods in Engineering, 10(5), pp. 393-401
(1994).
18. NZS 1170.5:2004. Structural design actions - Part 5:
Earthquake actions", Standards New Zealand, New
Zealand (2004).
19. Commentary NZS 1170.5:2004. Structural design actions
- Part 5: Earthquake actions", Standards New
Zealand, New Zealand (2004).
20. Clough, R.W. and Penzien, J., Dynamics of Structures,
McGraw-Hill, Singapore (1993).
21. Hairer, E. and Wanner, G., Solving Ordinary Differential
Equations II: Sti and Dierential-Algebraic
Problems, Springer, USA (1996).
22. Soroushian, A. and Amiri, S. A comment on nonlinear
time history analysis regulations of seismic code of New
Zealand applicable in Eurocode 8 and many other seismic
codes", 16th European Conference on Earthquake
Engineering (16ECEE), Thessaloniki, Greece (2018).
23. Den Hartog, J.P. Forced vibrations with combined
coulomb and viscous damping", Transactions American
Society of Mechanical Engineers, 53, pp. 107-115
(1931).
24. Wagsta, J. Experiments on the duration of impacts,
mainly of bars with rounded ends, in elucidation of
the elastic theory", Proceedings of the Royal Society of
London Series A Containing Papers of a Mathematical
and Physical Character, 105(733), pp. 544-570 (1924).
25. Leblanc, M. Automatic balancer for rotating bodies",
US Patent 1,159,052 (1915).
26. Wilson, E.L., Farhoomand, I., and Bathe, K.J. Nonlinear
dynamic analysis of complex structures", Earthquake
Engineering and Structural Dynamics, 1(3), pp.
241-252 (1972).
27. Geradin, M., Idelsohn, S., and Hohhe, M. Nonlinear
structural dynamics via Newton and quasi-Newton
methods", Nuclear Engineering and Design, 58(3), pp.
339-348 (1980).
28. Awrejcewicz, J. Chaotic motion in a nonlinear oscillator
with friction", KSME Journal, 2(2), pp. 104-109
(1988).
A. Soroushian et al./Scientia Iranica, Transactions B: Mechanical Engineering 25 (2018) 3258{3273 3269
29. Chen, X., Tamma, K.K., and Sha, D. Virtualpulse
time integral methodology: A new approach for
computational dynamics. Part 2. Theory for nonlinear
structural dynamics", Finite Elements in Analysis and
Design, 20(3), pp. 195-204 (1995).
30. Esche, S.K., Kinzel, G.L., and Altan, T. Issues in
convergence improvement for non-linear nite element
programs", International Journal for Numerical Methods
in Engineering, 40(24), pp. 4577-4594 (1997).
31. Bathe, K.J. and Baig, M.M.I. On a composite implicit
time integration procedure for nonlinear dynamics",
Computers and Structures, 83(31-32), pp. 2513-2524
(2005).
32. Gholampour, A.A. and Ghassemieh, M. A weighted
residual quadratic acceleration time integration
method in nonlinear structural dynamics", 2010 Second
International Conference on Computer Research
and Development, Kuala Lumpur, Malaysia (2010).
33. Wang, F. and Bajaj, A.K. Nonlinear dynamics of a
three-beam structure with attached mass and threemode
interactions", Nonlinear Dynamics, 62(1-2), pp.
461-484 (2010).
34. Soroushian, A., Wriggers, P., and Farjoodi, J. Practical
integration of semi-discretized nonlinear equations
of motion: proper convergence for systems with piecewise
linear behavior", ASCE, Journal of Engineering
Mechanics, 139(2), pp. 114-145 (2013).
35. Awrejcewicz, J., Krys'ko, V.A., and Vakakis, A.F.,
Nonlinear Dynamics of Continuous Elastic Systems,
Springer, Germany (2004).
36. Bursi, O.S., Jia, C., Vulcan, L., Neild, S.A., and
Wagg, D.J. Rosenbrock-based algorithms and subcycling
strategies for real-time nonlinear substructure
testing", Earthquake Engineering and Structural Dynamics,
40(1), pp. 1-19 (2011).
37. Krenk, S. Global format for energy-momentum based
time integration in nonlinear dynamics", International
Journal for Numerical Methods in Engineering,
100(6), pp. 458-476 (2014).
38. Kaveh, A., Fahimi-Farzam, M., and Kalateh-Ahani,
M. Performance-based multi-objective optimal design
of steel frame structures: nonlinear dynamic procedure",
Scientia Iranica, 22(2), pp. 373-387 (2015).
39. Rezaiee-Pajand, M. and Karimi-Rad, M. A new
explicit time integration scheme for nonlinear dynamic
analysis", International Journal of Structural Stability
and Dynamics, 16(9), pp. 1550054-1{1550054-26
(2016).
40. Alamatian, J. Generalized implicit multi time step
integration for nonlinear dynamic analysis", Scientia
Iranica, 24(6), pp. 2776-2792 (2017).
41. Tae, D. and Tamma, K.K. Mixed strong form representation
particle method for solids and structures",
Journal of Applied and Computational Mechanics,
DOI: 10.22055/JACM.2018.24877.1216 (in Press).
42. Lee, T.Y., Chung, K.J., and Chang, H. A new
procedure for nonlinear dynamic analysis of structures
under seismic loading based on equivalent nodal secant
stiness", International Journal of Structural Stability
and Dynamics, 18(3), pp. 1850043-1-1850043-27
(2018).
43. Du, X., Yang, D., Zhou, J., Yan, X., Zhao, Y.,
and Li, S. New explicit integration algorithms with
controllable numerical dissipation for structural dynamics",
International Journal of Structural Stability
and Dynamics, 18(3), 1850044 (2018).
44. Bornemann, P.B., Galvanetto, U., and Criseld, M.A.
Some remarks on the numerical time integration of
non-linear dynamical systems", Journal of Sound and
Vibration, 252(5), pp. 935-944 (2002).
45. Soroushian, A. Proper convergence, a concept new
in science and important in engineering", 4th International
Conference from Scientic Computing to
Computational Engineering (4th IC-SCCE), Athens,
Greece (2010).
46. Soroushian, A.,Wriggers, P., and Farjoodi, J. Asymptotic
upper-bounds for the errors of Richardson extrapolation
with practical application in approximate
computations", International Journal for Numerical
Methods in Engineering, 80(5), pp. 565-595 (2009).
47. Soroushian, A. Pseudo convergence and its implementation
in engineering approximate computations", 4th
International Conference from Scientic Computing to
Computational Engineering (4th IC-SCCE), Athens,
Greece (2010).
48. Liu, S. and Valko, P.P. Optimization of spacing and
penetration ratio for innite-conductivity fractures in
unconventional reservoirs: A section-based approach",
SPE Journal, 22(6), pp. 1877-1892 (2017).
49. Low, K.H. Convergence of the numerical methods for
problems of structural dynamics", Journal of Sound
and Vibration, 150(2), pp. 342-349 (1991).
50. Vassault, A., Hulin, A., Chapuzet, E., Arnaud, J.,
and Giroud, C. Verication/validation of the performances
of analytical method", Ann. Biol. Clin.,
68(Spec no 1), pp. 247-294 (2010).
51. Roache, P.J. Verication of codes and calculations",
AIAA Journal, 36(5), pp. 696-702 (1998).
52. Petri, L.A., Sartori, P., Rogenski, J.K., and de Souza,
L.F. Verication and validation of a direct numerical
simulation code", Computer Methods in Applied Mechanics
and Engineering, 291, pp. 266-279 (2015).
53. Doebling, S.W., Hemez, F.M., Robertson, A.N.,
Maupin, R.D., Schultze, J.F., Cundy, A.L., and
Hylock, J.E. Validation of the transient structural
response of a threaded assembly: Phase I", LA-14104-
MS, Los Alamos National Lab (LANL), Los Alamos,
USA (2004).
54. Ralston, A. and Rabinowitz, P., First Course in
Numerical Analysis, McGraw-Hill, USA (1978).
55. Noble, B. and Daniel, J.W., Applied Linear Algebra,
Prentice-Hall, USA (1977).
3270 A. Soroushian et al./Scientia Iranica, Transactions B: Mechanical Engineering 25 (2018) 3258{3273
56. Mostaghel, N. and David, T. Representations of
coulomb friction for dynamic analysis", Earthquake
Engineering and Structural Dynamics, 26(5), pp. 541-
548 (1997).
57. Soroushian, A. and Ahmadi, G. A three parameter
nonlinear dynamic system with exact closed form
solution", 17th International Congress on Sound &
Vibration, Cairo, Egypt (2010).
58. Petzold, L.A., Jay, L.O., and Yen, J. Numerical
solution of highly oscillatory ordinary dierential equations",
Acta Numerica, 6, pp. 437-483 (1997).
59. Quateroni, A., Sacco, R., and Saleri, F., Numerical
Mathematics, Springer, USA (2000).
60. Norris, C.H., Wilbur, J.B., and Utku, S., Elementary
Structural Analysis, McGraw Hill, USA (1976).
61. Hsieh, Y.Y., Elementary Theory of Structures, 2nd
Ed., Prentice-Hall, Englewood Clis, USA (1982).
62. Kuwabara, G. and Kimitoshi, K. Restitution coef-
cient in a collision between two spheres", Japanese
Journal of Applied Physics, 26(8), pp. 1230-1233
(1987).
63. Ruedigger, H., Christian, G. and Carsten, P. Comparison
12: Collision processes in rows of spheresde
nition and ACSL solution", SNE-Simulation News
Europe, 9(27), pp. 36-38 (1999).
64. Apostol, T.M., Calculus, I, John Wiley & Sons, USA
(1967).
65. Ayres, F. and Mendelson, E., Schaum's Outline of
Calculus, McGraw-Hill, New York, USA (1999). Also
http://mathworld.wolfram.com/
66. http://en.wikipedia.org/wiki/Sti equation
67. Bass, J.M. and Oden, J.T. Numerical solution of
the evolution equations of damage and rate-dependent
plasticity", International Journal of Engineering Science,
26(7), pp. 713-740 (1988).
68. Ilie, S. and Gholami, S. Simplifying stochastic mathematical
models of biochemical systems", Applied Mathematics,
4(1A), pp. 248-256 (2013).
69. Soroushian, A., Arghavani, M., Rajabi, M., Saaed, A.,
and Sharifpour, M.M. A proposition on the uniqueness
of solutions for nonlinear structural dynamic
models", 10th Biennial International Conference on
Vibration Problems, Technical University of Liberec,
Prague, Czech Republic (2011).
70. Collatz, L., The Numerical Treatment of Dierential
Equations, Springer, Berlin, Germany (1960).
71. Henrici, P., Discrete Variable Methods in Ordinary
Dierential Equations, John Wiley, New York, USA
(1962).
72. Strikwerda, J.C., Finite Dierence Schemes and Partial
Dierential Equations, Wadsworth & Books/Cole,
Pacic Grove, CA, USA (1989).
73. Gear, C.W., Numerical Initial Value Problems in
Ordinary Dierential Equations, Prentice Hall, Upper
Saddle River, NJ, USA (1971).
74. Kachenovsky, M., Kolyagin, Y., Kutasov, A.,
Lukankin, G., Yakovlev, G., and Oganesyan, V.,
Geometry (A Textbook for Technical Schools), Mir
Publishers, Russia (1982)