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Abstract. Nonlinear dynamic behavior of structural systems has a signi�cant role in many
engineering applications. Related analysis methods are typically numerical. Accordingly,
to verify and test their accuracy, availability of nonlinear systems with exact closed-
form solutions is important. In this paper, a three-parameter system, with an exact
analytical solution, consisting of two synchronized colliding mass-spring-dashpot systems,
is introduced, and the validity of the exact solutions is demonstrated. Simplicity of the
system and its exact response, and the capability to control the frequency content, as well as
the severity of the oscillatory behavior are addressed as the main features of the introduced
system. The potential future works are outlined.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Behaviors of structural systems are typically nonlinear
and dynamic. In certain cases, nonlinear dynamic
behavior can be simpli�ed to linear dynamic, nonlinear
static, or even linear static behaviors. For many
applications, however, no simpli�cation is plausible,
and the full nonlinear dynamic behavior needs to be
treated. Analysis of tall buildings or large bridges
against seismic excitations is an example [1-5]. The
general approach to analyzing structures' nonlinear
dynamic behaviors involves:

1. Discretizing equations of motion as well as bound-
ary and initial conditions, in space;

2. Solving the resulting initial value problem [6,7].

For a typical nonlinear structural system, the semi-
discretized problem is given as follows:

*. Corresponding author.
E-mail addresses: a.soroushian@iiees.ac.ir, &
aram.soroushian@gmail.com (A. Soroushian)

doi: 10.24200/sci.2018.20891

M�u(t) + fint(u; t) = f(t) 0 � t < tend;

Initial conditions:

����������
u(t = 0) = u0

_u(t = 0) = _u0

fint(t = 0) = fint0

Additional constraints: Q: (1)

In Eq. (1), t stands for time; tend is the duration of
analysis; M represents the mass matrix; fint implies
the internal force; f(t) is the excitation; u(t), _u(t),
and �u(t) denote the displacement, velocity, and ac-
celeration, respectively; u0, _u0, and fint0 stand for
the initial displacement, velocity, and internal force,
respectively [7,8]; Q represents additional restrict-
ing conditions in nonlinear problems, e.g., impact or
elastic-plastic behavior [9,10]. For linear problems,
fint(u; t) = Ku + C _u, and K and C stand for the
sti�ness and damping matrices, respectively. Time
integration is the most common approach to computing
the responses of nonlinear initial value problems given
by Eq. (1) [11,12]. However, similar to many other
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nonlinear analysis methods, time integration leads
to numerical inaccuracy and inexact responses [13-
15]. Furthermore, in nonlinear structural dynamic
analysis, the inaccuracy cannot be easily decreased in
all analyses [8,13,15-17]. This is not in agreement with
the essentiality in many practical approximate analy-
ses, for which the accuracy needs to be sequentially
improved [18-22].

Studying nonlinear structural dynamic behavior
and analysis from di�erent theoretical and practical
points of view started about a century ago [23-25]
and have continued more intensively over the last
decades [26-38] and, particularly, the last years [39-43].
There is a common consensus that nonlinear analyses
carried out with very small analysis parameters lead to
exact responses (for instance, consider time integration
analysis, for which the main analysis parameter is the
integration step size [44]). However, \very small" is a
problem-dependent notion [8], and implementation of
excessively small analysis parameters may also produce
signi�cant round-o� errors and is computationally ex-
pensive, generally [45]. The uncertainty in the notion
of \very small" is intolerable for large problems with
complex behavior. Therefore, the convention of assign-
ing very small values to the algorithmic parameters
and expecting su�ciently precise responses is neither
practical nor reliable. Alternatively, implementation
of an approach for evaluating errors with no need for
the exact responses is reported in [8,46-48]. How-
ever, these error estimates will be reliable when the
results converge properly [8,34,45,47]. Since proper
convergence is too di�cult to achieve in nonlinear
problems [8,13,16,17,44-49], availability of problems
with exact responses remains important to assess the
accuracy of the computational methods.

Assessment of accuracy and validation/ veri�ca-
tion of nonlinear structural analysis studies is in close
relation with errors and their convergence [50-53]. The
error is given as follows:
Eu = kua � uk ; (2)

where ua and u, respectively, denote the approximately
computed and exact displacement vectors [54], k k
implies an arbitrary norm [55], and Eu stands for the
displacement error (errors can be similarly de�ned for
velocity, acceleration, and other responses).

The objective of this study is to introduce non-
linear systems with exact closed-form solutions, such

that some of the important features can be set as
desired, while the system and its response are kept as
simple as possible. Availability of such systems would
be of interest in the assessment of new computational
methods [48,56,57]. For broader practical implemen-
tations, the features taken into account (in de�ning
these systems) are mainly mathematical. The e�orts
reported in this paper extend the results reported
in [57], considering decay of oscillations [12,20], severity
of oscillatory behavior (the number of oscillations
throughout the analysis interval) [58], mathematical
sti�ness (the ratio of the largest to smallest periods
in the response history) [21,59].

The discussion is followed with introducing a
simple linear SDOF (Single Degree Of Freedom) sys-
tem. In view of the simplicity, the linear system is
changed to a nonlinear SDOF system with exact closed-
form solution by adding an obstacle causing collision.
The obstacle is then replaced with an additional mass
considering structural symmetry [60,61]. Later the
symmetry is sacri�ced to obtain some desired features
of the behavior. Several examples are presented in
di�erent parts of the discussion, and the paper is
closed with a set of conclusions and potential future
works.

2. A three-parameter assembly of systems

2.1. Main idea
The simple linear SDOF system is given as follows:

�u+ 0:1 _u+ u = 0; u(t = 0) = 1;

_u(t = 0) = �0:05; 0 � t < 20; (3)

where the SI units are used. The exact response is
given by Eq. (4) [12,20]:

u(t) = [cos!Dt]e�0:05t; !D =
p

0:9975;

0 � t < 20: (4)

Herein, e �= 2:718281828459. The corresponding
displacement and velocity time histories are shown
in Figure 1. By placing an obstacle in the static
equilibrium position as shown in Figure 2, under the
assumption of elastic collision (i.e., � = 1, where �
is the coe�cient of restitution [62,63]), the response
becomes:

Figure 1. Exact response of the system given by Eq. (3).
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Figure 2. An SDOF system subjected to elastic collision
to an obstacle in the static equilibrium position.

u(t) = (sgn[cos!Dt])[cos!Dt]e�0:05t;

!D =
p

0:9975; 0 � t < 20; (5)

where \sgn" stands for the sign function de�ned as
follows [64]:

sgn(x) =

8><>:�1 when x < 0
0 when x = 0
1 when x > 0

(6)

The corresponding time variations of the response given
by Eq. (5) are shown in Figure 3.

If, instead of an obstacle providing the elastic
collision, the impacts resulted from another SDOF
system, identical to the original system with reverse
initial conditions, the motion of the coupled systems

would be governed by:

�ui + 0:1 _ui + ui = 0; i = 1; 2;

ui(t = 0) = (�1)i+1; _ui(t = 0) = 0:05(�1)i;

� = 1; 0 � t < 20: (7)

In view of the existing symmetry, the exact analytical
expression for the response of Eq. (7) may be stated as
follows:

u1(t) = (sgn[cos!Dt])[cos!Dt]e�0:05t;

u2(t) = �(sgn[cos!Dt])[cos!Dt]e�0:05t;

!D =
p

0:9975; 0 � t < 20: (8)

Herein, u1 and u2 represent the displacements of the
�rst and second masses, respectively. The correspond-
ing displacement and velocity of masses 1 and 2 are
displayed in Figure 4. It is seen that the time histories
of displacement and velocity for mass 1 are identical
to those shown in Figure 3 with the presence of an
obstacle.

In the remainder of this section, the above system
of coupled colliding oscillators is extended to a three-
parameter system with the capability to control fea-
tures such as mathematical sti�ness. A corresponding
sample response is shown in Figure 5. It is seen that

Figure 3. Exact response of the nonlinear system given in Figure 2.

Figure 4. Exact response of the nonlinear system given by Eq. (7).

Figure 5. A sample extension of the exact response displayed in Figure 4.
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the collisions of the masses occur at selected common
equilibrium point of the two masses at speci�c time
instants.

2.2. Detailed formulation
To derive a generalized form of Eq. (7) and to cover
a wider variety of structural systems, it is essential to
understand the details of the process for developing
the exact solution given by Eq. (8). With regard to the
systems of colliding masses [9,63], the main points are:

1. Characteristics of the two SDOF systems are set
such that their natural frequencies are equal;

2. Characteristics of the two SDOF systems, including
their initial conditions, are set such that the �rst
collision occurs in the common static equilibrium
position;

3. The impacts are elastic (the coe�cient of restitution
equals one [63]);

4. The characteristics of the two SDOF systems are
set, such that, at the instant of the �rst collision,
the momentums of the two masses are equal and
opposite in sign;

5. The duration of the analysis and the viscous damp-
ing are set in such a way that the oscillations decay
as desired;

6. The oscillations start from zero phases at peak
displacements;

7. The masses are assumed concentrated at points.

Since the collisions are elastic and the two momen-
tums are equal at the instant of collision, the velocities
before the �rst collision simply change sign after the
collision. Furthermore, since the natural frequencies
are equal and the �rst collision occurs in the common
static equilibrium position, the collisions continue to
occur repeatedly in the static equilibrium position. The
amplitudes, however, decrease due to damping, and
this trend continues in time as predicted by Eq. (8).

To generalize the response shown in Figure 4 to
that exempli�ed in Figure 5, we need to enforce the
occurrence of the �rst collision of two masses in the
common static equilibrium position, after a quarter of
an oscillation period of the �rst mass, and a quarter
and an integer number of oscillation periods of the
second mass. Accordingly, since the momentums are
equal and the collision is elastic, collision between
the two masses will be repeated in time in the static
equilibrium position, while the masses oscillate freely
between the successive collisions. The \quarter period"
noted above originates in the fact that, in Figure 4, the
�rst collision occurs after one-fourth of the oscillation
period (the \integer number" N noted above is an

arbitrary positive number). That is, Figure 5 indicates:

1!D2 = (4N + 1)1!D1 ;

1!D1 = 1!1

q
1� �2

1 ; N = 0; 1; 2; 3; � � � : (9)

In Eq. (9), 1!Di represents the oscillatory frequency
of mass i (i = 1; 2) when the other mass is absent, N is
the above-mentioned integer number, and 1!1, which
equals to one, stands for the undamped oscillatory fre-
quency of Mass 1 when Mass 2 is absent. Equivalently,
N can be de�ned as the number of maximum displace-
ments of the second mass, before the �rst collision. For
example, Figures 4 and 5, respectively, show N = 0 and
N = 1. As implied in Eq. (9) and Figure 5, N strongly
a�ects the frequency content of the response. Sample
simulation results for N = 1; 2, and 10 are shown in
Figure 6. It is seen that the amplitude of the oscillation
of the second mass decreases as N increases. Figure 6
displays the Fourier amplitude of the displacements of
the two masses [65]. Herein, di�erent line thicknesses
are used for di�erent masses for clarity. Time steps of
0.001 s are used for accurate evaluation of the Fourier
amplitudes. It is seen that as N increases, the smallest
period decreases, as in Eq. (9), and the corresponding
Fourier amplitude decreases, too. Consistent with the
earlier literature [21,59,66-68], for the present system,
the \mathematical sti�ness ratio" is de�ned as follows:

Ims = 1!D2

1!D1

= 4N + 1: (10)

From the discussion of Figure 6 above, Ims is an
upper bound of the ratio of the largest period (smallest
frequency) non-trivially contributing to the response
to the smallest period (largest frequency) non-trivially
contributing to the response (see also [21,59]). In other
words,

log(4N + 1) � log(TL)� log(TS)) Ims � TL
TS
; (11)

where TL and TS , respectively, denote the largest and
smallest oscillatory periods non-trivially contributing
to the response. Herein, TL can be approximated as:

TL = �=1!D1 = �=
q

1� �2
1 :

However, evaluation of TS requires numerical e�ort,
especially for large values of N .

In order to ensure the equality of the momentums
at the instant of collision, the condition:

�11!1 = �21!2; (12)

is enforced that leads to the equality of the exponential
terms in the solutions. Herein, �i and 1!i, respec-
tively, stand for the damping coe�cient and undamped
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Figure 6. Extension of the responses displayed in Figure 4 in time and frequency domains: (a) N = 1, (b) N = 2, and (c)
N = 10.

natural frequency associated with mass i (i = 1; 2).
Consequently, the result of the momentums equality is
stated below:

m2 = �u1(t = 0)
u2(t = 0)

m1

4N + 1
: (13)

In order to determine �1 and �2, it is assumed that:

0 � �i=1;2 < 1: (14)

From Eqs. (10), (11), (14), and the relation of 1!Di =
1!i

p
1� �2

i [12,20], it is found that:

�2 =
�1p

X2 � �2
1X2 + �2

1
; (15)

where:

X = 4N + 1: (16)

In summary, when, the values of u1(t = 0), m1, �1, and
k1 are given, m2u2(t = 0), �2, and k2 can be evaluated
through Eqs. (12), (13), and (15). Then, the initial _u2
(t = 0) can be obtained from:

_u2(t = 0) = ��21!2u2(t = 0): (17)

Based on main points 2 and 6 described in the be-
ginning of this section, collisions, not in the static
equilibrium position, are unacceptable. Therefore,
the values of m2 and u2 (t = 0) should be set so
as to prevent the undesired collisions. A su�ciency
requirement for the collision to occur at the static
equilibrium point demonstrated in Appendix A is given
as follows:

0 < �u2(t = 0) � 3u1(t = 0)
4N + 1

: (18)

Because of the inequality sign in Eq. (18), there is
redundancy for the selection of u2(t = 0). Selection
of smaller values for the initial displacement leads to
smaller amplitudes for the oscillation of the second
mass. Therefore, typically, the equality sign in Eq. (18)
is used. The resulting one-parametric system of col-
liding oscillators may be stated as follows (N is the
parameter):

�u1 + 0:1 _u1 + u1 = 0; u1(t = 0) = 1;

_u1(t = 0) = �0:05;

m2�u2 + 2m21!2�2 _u2 + k2u2 = 0;
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u2(t = 0) = d2; _u2(t = 0) = �0:05d2;

0 � t < 20;

� = 1; m2 =
1
3
;

�2 =
0:05p

0:9975(4N + 1)2 + 0:0025
;

k2 =
0:9975(4N + 1)2 + 0:0025

3
;

1!2 =
r
k2

m2
; d2 =

�3
4N + 1

: (19)

The corresponding exact response is given by:

u1(t)=sgn
�
cos
hp

0:9975t
i�

cos
hp

0:9975t
i
e�0:05t;

u2(t) =
�3

4N + 1
sgn

�
cos
hp

0:9975t
i�

cos
h
(4N + 1)

p
0:9975t

i
e�0:05t;

0 � t < 20: (20)

These responses for di�erent values of N are displayed
in Figure 7. For larger values of N , the ratio between
the largest and smallest frequencies of oscillations
increases, and the system may become mathematically

more sti� [21,59,66-68]; similar trends are also shown
in Figure 6. In other words, as N increases, the
oscillations of the second mass occur with higher
frequencies and smaller amplitudes. Eqs. (15) and (16)
show that an increase in �1 causes an increase in �2;
therefore, an increase in the rate of the oscillations
decays. Accordingly, �1 is considered, as the second
parameter of the proposed system. The resulting
system is given by:

�u1 + 2�1 _u1 + u1 = 0; u1(t = 0) = 1;

_u1(t = 0) = ��1;
m2�u2 + 2m21!2�2 _u2 + k2u2 = 0;

u2(t = 0) = d2; _u2(t = 0) = ��1d2;

0 � t < 20;

� = 1; m2 =
1
3
;

�2 =
�1p

(1� �2
1)(4N + 1)2 + �2

1
;

k2 =
(1� �2

1)(4N + 1)2 + �2
1

3
;

1!2 =
r
k2

m2
; d2 =

�3
4N + 1

; (21)

Figure 7. Exact response of the system given by Eq. (19): (a) N = 2, (b) N = 5, and (c) N = 20.
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and the exact response is given as follows:

u1(t)=sgn
�

cos
�q

1� �2
1t
��

cos
�q

1� �2
1t
�
e��1t;

u2(t) =
�3

4N + 1
sgn

�
cos
�q

1� �2
1t
��

cos
�
(4N + 1)

q
1� �2

1t
�
e��1t;

0 � t < 20: (22)

Figure 8 shows sample responses for di�erent
damping coe�cients and various values of N . It is
seen that the rate of decay increases as the damping
coe�cient increases. In addition, as N increases, the
frequency of oscillation of the second mass sharply
increases.

The severity of oscillatory behavior is de�ned as
how many oscillations occur in the duration under
study [57,58] and can be measured using an indicator:

IOC =
tend

TS
: (23)

For small values of TS , IOC will be large, implying more

oscillatory behavior. Hence, by setting the duration of
the oscillations, tend, equal to a multiple, at, of the
duration used in Eq. (7), (i.e., 20 sec), it is assumed
that:

tend = 20at; at > 0: (24)

We can consider, at, as the third parameter (in addi-
tion to N and �1). In the resulting three-parameter
system, the mathematical sti�ness, the decay rate of
oscillations, and the severity of the oscillatory can be
controlled. Figure 9 shows sample solutions for �xed
values of N and �1 and di�erent values of at where
the behavior is more oscillatory when at is larger.
Consequently, by considering N (N = 0; 1; 2; � � � ), �1
(0 � �1 < 1), and at (at > 0), the three-parameter
system can be de�ned as follows:

�u1 + 2�1 _u1 + u1 = 0; u1(t = 0) = 1;

_u1(t = 0) = ��1;
m2�u2 + 2m21!2�2 _u2 + k2u2 = 0;

u2(t = 0) = d2; _u2(t = 0) = �d2�1; 0 � t < 20at;

Figure 8. E�ects of �1 on the displacements in Figure 7: (a) N = 2, (b) N = 5, and (c) N = 20.

Figure 9. E�ects of at on the exact response in Figure 8(b), when �1 = 0:10: (a) at = 2, (b) at = 5, and (c) at = 20.
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Figure 10. Examples for the exact responses of the three-parameter system introduced in Eq. (25): (a) N = 0, �1 = 0:05,
at = 4, (b) N = 0, �1 = 0:05, at = 1, (c) N = 0, �1 = 0:10, at = 1, (d) N = 1, �1 = 0:10, at = 1, (e) N = 1, �1 = 0:15,
at = 1, (f) N = 1, �1 = 0:15, at = 1:2, (g) N = 2, �1 = 0:15, at = 1:2, (h) N = 2, �1 = 0:25, at = 1:2, (i) N = 2, �1 = 0:25,
at = 1:6, and (j) N = 5, �1 = 0:25, at = 0:8.

� = 1; m2 =
1
3
;

�2 =
�1p

(1� �2
1)(4N + 1)2 + �2

1
;

k2 =
(1� �2

1)(4N + 1)2 + �2
1

3
;

 
1!2 =

r
k2

m2

!
;

d2 =
�3

4N + 1
: (25)

The exact response is given by:

u1(t)=sgn
�

cos
�q

1��2
1t
��

cos
�q

1��2
1t
�
e��1t;

u2(t) =
�3

4N + 1
sgn

�
cos
�q

1� �2
1t
��

cos
�
(4N + 1)

q
1� �2

1t
�
e��1t;

0 � t < 20at: (26)

In the examples shown in Figure 10, mathematical
sti�ness, severity of the oscillatory behavior, and decay
of oscillations depend on N , �1, and at. The values of
the parameters used in Figure 10(a)-(j) clearly reveal
a broad range of systems expressible by Eq. (25). In
the �rst three �gures, N = 0 was used, while N = 1
was selected in the next three �gures and is followed by
N = 2 in Figure 10(g)-(i); �nally, in Figure 10(j), the
response for N = 5 is shown. In Figure 10(a) and (b),
the only di�erence is in the values of at. Similarly,
with the exception of Figure 10(j), each two successive
�gures in Figure 10 di�er in only one of the three
parameters, N , �1, and at. Figure 10(i) and (j) di�er
in both N and at.

It is worth comparing the three-parameter sys-
tems briey introduced in this section with those
presented in [57]. It should be pointed out that
Eqs. (25) and (26) are somewhat di�erent from those
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presented in [57]. The new three-parameter system and
the associated response presented here are simpler to
formulate and have a simpler physical interpretation.
In addition, all the system's parameters are completely
quanti�able.

2.3. Responses validation
The purpose in this section is to show that Eq. (26)
is actually the response of the three-parameter system
de�ned in Eq. (25). Since elastic collision between
the two masses is the only source of nonlinearity in
Eq. (25), the behavior can be considered piece-wise
linear (see [34]). Consequently, the response exists and
is unique (see [21,69,70]), and it is su�cient to show
that Eq. (26) is a response of Eq. (25). By starting from
the initial conditions, we can study the �rst segment of
the piece-wise linear behavior with regard to simple
structural dynamics principles [12,20]. Considering tC1

as the instant at which the �rst collision occurs, the
responses at the �rst segment of the piece-wise linear
behavior are given as follows:

u1(t) = cos
�q

1� �2
1t
�
e��1t;

u2(t) =
�3

4N + 1
cos
�
(4N + 1)

q
1� �2

1t
�
e��1t;

0 � t < tC1 : (27)

It is followed by [65]:

tC1 =
�

2
p

1� �2
1
; (28)

and:

u1(tC1) = u2(tC1) = 0: (29)

Since the collision is elastic and occurs in the common
static equilibrium position of the two masses, the
collision mirrors (with respect to the time axis) the
response that would have existed if there were no
collision, as illustrated in Figure 11. Therefore:

u1(t)=sgn
�

cos
�q

1��2
1t
��

cos
�q

1��2
1t
�
e��1t;

u2(t) =
�3

4N + 1
sgn

�
cos
�q

1� �2
1t
��

cos
�
(4N + 1)

q
1� �2

1t
�
e��1t;

0 � t < tC� ; (30)

where:

tC1 < tC� = min

 
�p

1� �2
1
; tC2

!
; (31)

Figure 11. Typical e�ect of elastic collision between
masses with equal momentum in their common static
equilibrium position on each of the responses histories.

and tC2 stands for the instant of the second collision.
Eq. (30) represents the two responses in all or a part of
the second segment of the piece-wise linear behavior.
Apparently, Eq. (30) does not imply any collision at
the interval between tC1 and �=

p
1� �2

1 . Therefore,
tC� = �=

p
1� �2

1 . Considering the changes of cosine
when its argument equals � and 1:5�, Eq. (30) can be
extended to:

u1(t) = sgn
�

cos
�q

1��2
1t
��

cos
�q

1��2
1t
�
e��1t;

u2(t) =
�3

4N + 1
sgn

�
cos
�q

1� �2
1t
��

cos
�
(4N + 1)

q
1� �2

1t
�
e��1t;

0 � t < tC�� ; (32)

where:

�p
1� �2

1
< tC�� = min

 
3�

2
p

1� �2
1
; tC2

!
: (33)

Based on Eq. (32) and simple algebra, we get [65]:

tC�� =
3�

2
p

1� �2
1

= tC2 ; (34)

and since, from Eqs. (32) and (33):

u1(tC2) = u2(tC2) = 0; (35)

and the collisions are elastic, the trend displayed in
Figure 11 is repeated.
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Once again, since cosine changes sign when its
argument equals 1:5�, Eq. (32) can be extended as
follows:

u1(t)=sgn
�

cos
�q

1��2
1t
��

cos
�q

1��2
1t
�
e��1t;

u2(t) =
�3

4N + 1
sgn

�
cos
�q

1� �2
1t
��

cos
�
(4N + 1)

q
1� �2

1t
�
e��1t;

0 � t < tC��� ; (36)

where:

3�
2
p

1� �2
1
< tC��� = min

 
2�p
1� �2

1
; tC3

!
: (37)

According to Eq. (36), no collision occurs between the
two masses at the interval between tC2 = 3�=2

p
1� �2

1
and 2�=

p
1� �2

1 ; thus:

tC��� =
2�p
1� �2

1
: (38)

In view of Eqs. (36) and (38), Eq. (26) is valid at the
time interval between t = 0 and t = 2�=

p
1� �2

1 .
Meanwhile, interestingly, the displacements and ve-
locities of the two masses at t = tC��� are equal to
those at t = tC��� , when there are no collisions. This
simply becomes apparent by comparing Eq. (27) with
Eq. (36) at t = tC��� . As an example, study results of
the case of N = 1, �1 = 0:1, at = 1 are reported in
Figure 12 (the velocities are not plotted for the sake of
brevity). Consequently, at t = tC��� , we have returned

to the starting stage of the discussion and Eq. (27), yet
with smaller amplitudes. The discussion can, hence, be
simply repeated, leading to the validity of Eq. (26) at
the interval among t = 0, t = 2tC��� = 4�=

p
1� �2

1 ,
t = 0, t = 3tC��� = 6�=

p
1� �2

1 , etc. Accordingly,
by repeating the discussion, Eq. (26) is valid for the
desired time interval.

The second way to test the validity of Eq. (26)
is through successful computations that converge to
analytical solutions at the limit of zero values of the
algorithmic parameters [71-73]. In other words, the
numerical solutions of Eq. (25) should converge to those
of Eq. (26).

3. Conclusions

With the aim of better evaluation of the accuracies that
methods dedicated to nonlinear structural dynamic
analysis provide, a class of three-parameter structural
systems was introduced, whose exact analytical solu-
tions were presented. Speci�cally,

1. The presented class consisted of two synchronized
colliding mass-spring-dashpot systems oscillating
on the same plane, with collisions between masses
occurring in the common static equilibrium posi-
tion;

2. The presented system and its exact analytical solu-
tion were simple;

3. The three parameters of these systems could be
set for the desired mathematical sti�ness, decay of
oscillation, and severity of the oscillatory behavior;

4. Another interesting feature attributed to the pro-
posed system was the piece-wise linear with an
overall nonlinear behavior;

Figure 12. Coincidence at tC��� , 2tC��� , and 3tC��� , � � � , of the actual responses with the responses obtained after
disregarding the collisions, typically for the case N = 1, �1 = 0:1, at = 1: (a) The �rst mass, and (b) the second mass.
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5. The system can be used for assessment of accuracy
in many engineering problems dealing with nonlin-
ear behavior.

For the future work, we plan to extend the approach to
a class of six-parameter nonlinear systems with exact
closed-form solutions that provide additional exibility
for applications to real physical problems.
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Appendix A

The aim here is to demonstrate that the condition given
by Eq. (18) is su�cient to prevent collisions occurring
at any other point except the static equilibrium posi-
tion of the system de�ned in Section 2. According to
Eqs. (7) and (8), the responses of the two masses may
be stated as:

u1(t) =u1(t = 0)sgn
�

cos
�q

1� �2
1t
��

cos
�q

1� �2
1t
�
e��1t;

u2(t) =u2(t = 0)sgn
�

cos
�q

1� �2
1t
��

cos
�
(4N + 1)

q
1� �2

1t
�
e��1t;

u1(t = 0) > 0: (A.1)

It should be shown that, for the response in Eq. (A.1):

u1(t) > u2(t); (A.2)

if:

N = 1; 2; 3; � � � ; 0 � �1 < 1;

0 < �u2(t = 0) � 3u1(t = 0)
4N + 1

;

t 6= 0:5�p
1� �2

1
;

1:5�p
1� �2

1
; � � � (Instants of

collision at the static equilibrium position): (A.3)

The �rst, second, and forth relationships in Eq. (A.3)
are considered valid; the validity of the third relation is
discussed (which is Eq. (18)). We �rst study the case
in which the equality holds. That is:

0 < �u2(t = 0) =
3u1(t = 0)

4N + 1
: (A.4)

Using Eq. (A.4), in Eq. (A.2), u1(t) and u2(t) may be
restated as follows:

u1(t)=sign
�

cos
�q

1��2
1t
��

cos
�q

1��2
1t
�
e��1t;
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u2(t) =
�3

4N + 1
sign

�
cos
�q

1� �2
1t
��

cos
�
(4N+1)

q
1��2

1t
�
e��1t; u1(t=0)>0:

(A.5)

Since the arguments of the two Sgn functions in
Eq. (A.5) are identical, the following two ranges are
studied separately:

2k� � �
2
<
q

1� �2
1t < 2k� +

�
2
;

(2k + 1)� � �
2
<
q

1� �2
1t < (2k + 1)� +

�
2
;

k = 0; 1; 2; 3 � � � : (A.6)

For the �rst case, Eq. (A.5) will be simpli�ed to:

u1(t) = cos
�q

1� �2
1t
�
e��1t;

u2(t) =
�3

4N + 1
cos
�
(4N + 1)

q
1� �2

1t
�
e��1t;

u1(t = 0) > 0: (A.7)

By replacing t with �t de�ned as:

2k� + �t =
q

1� �2
1t; (A.8)

and using simple trigonometry [65], Eqs. (A.7) become:

u1(t) = cos �te
��1

 
2k�p
1��21

+ �tp
1��21

!
;

u2(t)=
�3

4N+1
cos [(4N+1)�t ] e

��1
 

2k�p
1��21

+ �tp
1��21

!
;

��
2
< �t <

�
2
: (A.9)

By using Eq. (A.9), the validity condition (A.2) (in the
�rst case of Eq. (A.6) is equivalent to the validity of
the following:

D (�t) > 0; ��
2
< �t <

�
2
; (A.10)

where:

D (�t) = u1 (�t)� u2 (�t) : (A.11)

From Eqs. (A.9) and (A.11):

D (�t) =e
��1

 
2k�p
1��21

+ �tp
1��21

! 
cos �t+

3
4N+1

cos [(4N+1)�t ]

!
; ��

2
< �t <

�
2
; (A.12)

is to be positive de�nite. Therefore, in the �rst case
addressed in Eq. (A.6), Eq. (A.2) can be validated by
studying the positive de�niteness of D0(�t) as follows:

D0 (�t) = cos �t+
3

4N + 1
cos [(4N + 1)�t ] ;

��
2
< �t <

�
2
: (A.13)

To check the positive de�niteness of D0, the variations
of D0 at the interval ��=2 < �t < �=2 for di�erent
values of N are plotted in Figure A.1. It is seen that
D0 is positive; thus, Eq. (A.2) is valid for the �rst case
in Eq. (A.6).

In the other case, Eq. (A.5) gives:

u1(t) = � cos
�q

1� �2
1t
�
e��1t;

u2(t) =
3

4N + 1
cos
�
(4N + 1)

q
1� �2

1t
�
e��1t;

u1(t = 0) > 0: (A.14)

By replacing t with ��t de�ned below:

(2k + 1)� + ��t = t
q

1� �2
1 : (A.15)

Eq. (A.14) and the second relation in Eq. (A.6) will
lead to:

u1(t) = cos ��te
��1

 
2k�p
1��21

+ ��tp
1��21

!
;

u2(t)=
�3

4N+1
cos
�
(4N+1)��t

�
e
��1

 
2k�p
1��21

+ ��tp
1��21

!
;

��
2
< ��t <

�
2
: (A.16)

The validity of Eq. (A.2) is then equivalent to the
positive de�niteness of D00:

D00
���t� = cos ��t+

3
4N + 1

cos
�
(4N + 1)��t

�
;

��
2
< ��t <

�
2
; (A.17)

which is valid since Eq. (A.17) is conceptually identical
to Eq. (A.13), and Figure A.1 shows that D00 > 0.

From simple geometry [74], it is apparent that
reducing u2(t = 0), i.e.:

0 < �u2(t = 0) <
3u1(t = 0)

4N + 1
; (A.18)

would lead to conservative responses; see Figure A.2.
Consequently, the proof is complete, and Eq. (18)
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Figure A.1. Positive-de�niteness of the D0 de�ned in Eq. (A.13): (a) N = 1, (b) N = 2, (c) N = 5, (d) N = 20, (e)
N = 100, and (f) N = 105.

Figure A.2. Typical comparison between Eqs. (A.4) and (A.18) for potential collisions not at u = 0 in the system
proposed in Section 2 (�1 = 0:1, N = 1; 2; 5): (a) �u2(t = 0) = 3u1(t = 0)=4N + 1 (Eq. (A.4)), and (b)
�u2(t = 0) = 1:5u1(t = 0)=4N + 1.

is a su�cient condition to prevent collisions only in
the static equilibrium position. The conservativeness
implied in Figures A.1 and A.2 (i.e., D0(�t) is never
zero at the interval ��=2 < �t < �=2) gives rise to
questions about the origin of Eq. (18). As a brief

response, attention should be paid to Figure A.3.
Figure A.3. simply explains that, for small values
of �1, Eq. (18) is a su�cient condition against col-
lisions not in the static equilibrium position in the
system.
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Figure A.3. Details of the most probable collision not in the static equilibrium position between masses of the system
proposed in Section 2 when the damping is small.
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