Lion pride optimization algorithm: A meta-heuristic method for global optimization problems

Document Type : Article


1 Centre of Excellence for Fundamental Studies in Structural Engineering, Iran University of Science and Technology, Narmak, Tehran, P.O. Box 16846-13114, Iran

2 School of Civil Engineering, Iran University of Science and Technology, Narmak, Tehran, P.O. Box 16846-13114, Iran


This paper presents a new non-gradient nature-inspired method, Lion Pride Optimization Algorithm (LPOA) for solving optimal design problems. This method is inspired by the natural collective behavior of lions in their social groups "lion prides". Comparative studies are carried out using fifteen mathematical examples, two benchmark structural design problems, in order to verify the effectiveness of the proposed technique. The LPOA algorithm is also compared with other algorithms for some mathematical and structural problems. The results have proven that the proposed algorithm provides desirable performance in terms of accuracy and convergence speed in all the considered problems.


Main Subjects

1. Wolpert, D.H. and Macready, W.G. No free lunch theorems
for optimization", IEEE Trans. Evol. Comput.,
1(1), pp. 67-82 (1997).
2. Kaveh, A. and Ilchi Ghazaan, M. A new metaheuristic
algorithm: vibrating particles system", Sci.
Iran., Transactions A, Civil Engineering, 24(2), pp.
551-566 (2017).
3. Kaveh, A. and Bakhshpoori, T. Water Evaporation
Optimization: A novel physically inspired optimization
algorithm", Comput. Struct., 167, pp. 69-85
4. Yu, J.J.Q. and Li, V.O.K. A social spider algorithm
for global optimization", Appl Soft Comput., 30, pp.
614-627 (2015).
5. Mirjalili, S. Dragon
y algorithm: a new metaheuristic
optimization technique for solving singleobjective,
discrete, and multi-objective problems",
Neural Comput Applic., 27(4), pp. 1053-1073 (2016).
6. Mirjalili, S., Mirjalili, S.M., and Lewis, A. Grey wolf
optimizer", Adv. Eng. Softw., 69, pp. 46-61 (2014).
7. Kaveh, A. and Talatahari, S. A novel heuristic optimization
method: charged system search", Acta Mech.,
213(3), pp. 267-289 (2010).
8. Yang, X.-S. Fire
y algorithm, stochastic test functions,
and design optimisation", Int. J. Bio-Inspired
Comput., 2(2), pp. 78-84 (2010).
9. Sadollah, A., Bahreininejad, A., Eskandar, H., and
Hamdi M. Mine blast algorithm for optimization
of truss structures with discrete variables", Comput.
Struct., 102, pp. 49-63 (2012).
10. Geem, Z.W., Kim, J.H., and Loganathan, G. A new
heuristic optimization algorithm: harmony search",
Simulat., 76(2), pp. 60-68 (2001).
11. Kaveh, A., Advances in Metaheuristic Algorithms for
Optimal Design of Structures, 2nd Edn., Springer,
Switzerland (2017).
12. Rajakumar, B.R. The lion's algorithm: a new natureinspired
search algorithm", Procedia Technol., 6, pp.
126-135 (2012).
13. Wang, B., Jin, X., and Cheng, B. Lion pride optimizer:
An optimization algorithm inspired by lion
pride behavior", Sci. China Inform. Sci., 55(10), pp.
2369-2389 (2012).
14. Yazdani, M. and Jolai, F. Lion optimization algorithm
(LOA): A nature-inspired metaheuristic algorithm",
J. Comput. Des. Eng., 3(1), pp. 24-36 (2016).
15. Schaller, G.B., The Serengeti Lion: A Study of
Predator-Prey Relations, University of Chicago Press
16. Mitchell, J. Predation on large mammals in the Kafue
National Park", Zambia. African Zoology, 1(2), pp.
297-318 (1965).
17. Stander, P.E. Cooperative hunting in lions: the role
of the individual", Behavior. Ecolol. Sociobiol., 29(6),
pp. 445-454 (1992).
18. Scheel, D. and Packer, C. Group hunting behaviour
of lions: a search for cooperation", Animal Behaviour,
41(4), pp. 697-709 (1991).
19. Andersen, K. and Vulpius, T. Urinary volatile constituents
of the lion, Panthera leo", Chem. Sens.,
24(2), pp. 179-189 (1999).
20. Allen, T.B. and Goodall, J., Animals of Africa.,
Universe Publishing (2008).
21. Hrdy, S.B. Empathy, polyandry, and the myth of
the coy female", Conceptual Issues in Evolutionary
Biology, p. 131 (2006).
22. Packer, C. and Pusey, A.E. Adaptations of female lions
to infanticide by incoming males", Amer. Natural.,
121(5), pp. 716-728 (1983).
23. Packer, C. and Ruttan, L. The evolution of cooperative
hunting", Amer. Natural., 132, pp. 159-198
24. Liang, J., Qu, B., Suganthan, P., and Chen,
Q. Problem de nitions and evaluation criteria for
the CEC 2015 competition on learning-based realparameter
single objective optimization", Technical
Report201411A, Computational Intelligence Laboratory,
Zhengzhou University, Zhengzhou China and
Technical Report, Nanyang Technological University,
Singapore (2014).
3132 A. Kaveh and S. Mahjoubi/Scientia Iranica, Transactions B: Mechanical Engineering 25 (2018) 3113{3132
25. Liang, J.-J., Suganthan, P.N., and Deb. K. Novel
composition test functions for numerical global optimization",
In Proceedings 2005 IEEE Swarm Intelligence
Symposium, SIS 2005, IEEE (2005).
26. Kennedy, J. and Eberhart, R. Particle swarm optimization",
Proc., IEEE International Conference on
Neural Networks (1995).
27. Kaveh, A. and Mahdavi, V.R. Colliding bodies optimization:
a novel meta-heuristic method", Comput.
Struct., 139, pp. 18-27 (2014).
28. Kaveh, A. and Ilchi Ghazaan, M. Enhanced colliding
bodies optimization for design problems with continuous
and discrete variables", Adv. Eng. Softw., 77, pp.
66-75 (2014).
29. Eskandar, H., Bahreininejad, A., Eskandar, H., and
Hamdi, M. Water cycle algorithm - A novel metaheuristic
optimization method for solving constrained
engineering optimization problems", Comput. Struct.,
110-111, pp. 151-166 (2012).
30. Mirjalili, S. and Lewis, A. The whale optimization
algorithm", Adv. Eng. Softw., 95, pp. 51-67 (2016).
31. Friedman, M. The use of ranks to avoid the assumption
of normality implicit in the analysis of variance",
J. Amer. Statist. Asso., 32(200), pp. 675-701 (1937).
32. Friedman, M. A comparison of alternative tests of
signi cance for the problem of m rankings", Annals
Math Statist., 11(1), pp. 86-92 (1940).
33. Derrac, J., Garca, S., Molina, D., and Herrera, F.
A practical tutorial on the use of nonparametric
statistical tests as a methodology for comparing evolutionary
and swarm intelligence algorithms", Swarm
Evol. Comput., 1(1), pp. 3-18 (2011).
34. Holm, S. A simple sequentially rejective multiple test
procedure", Scandin. J. Statist., pp. 65-70 (1979).
35. Rom, D.M. A sequentially rejective test procedure
based on a modi ed Bonferroni inequality",
Biometrika., 77(3), pp. 663-665 (1990).
36. Hommel, G. A stagewise rejective multiple test procedure
based on a modi ed Bonferroni test", Biometrika,
75(2), pp. 383-386 (1988).
37. Finner, H. On a monotonicity problem in step-down
multiple test procedures", J. Amer. Statist. Asso.,
88(423), pp. 920-923 (1993).
38. Holland, B.S. and Copenhaver, M.D. An improved
sequentially rejective Bonferroni test procedure", Biometrics,
43(2), pp. 417-423 (1987).
39. Li, J.D. A two-step rejection procedure for testing
multiple hypotheses", J. Statist. Plan. Infer., 138(6),
pp. 1521-1527 (2008).
40. Kaveh, A., Farhmand Azar, B., and Talatahari, S.
Ant colony optimization for design of space trusses",
Int. J. Space Struct., 23(3), pp. 167-181 (2008).
41. Lee, K.S. and Geem, Z.W. A new structural optimization
method based on the harmony search algorithm",
Comput. Struct., 82(9), pp. 781-798 (2004).
42. Li, L.J., Huang, Z.B., and Liu, F. A heuristic particle
swarm optimization method for truss structures with
discrete variables", Comput. Struct., 87(7-8), pp. 435-
443 (2009).
43. Wu, S.-J. and Chow, P.-T. Steady-state genetic algorithms
for discrete optimization of trusses", Comput.
Struct., 56(6), pp. 979-991 (1995).
44. Cheng, M.-Y. and Prayogo, D. Symbiotic organisms
search: a new metaheuristic optimization algorithm",
Comput. Struct., 139, pp. 98-112 (2014).
45. Li, L., Huang, Z., Liu, F., and Wu Q. A heuristic
particle swarm optimizer for optimization of pin connected
structures", Comput. Struct., 85(7), pp. 340-
349 (2007).
46. Kaveh, A. and Farhoudi, N. A new optimization
method: Dolphin echolocation", Adv. Eng. Softw., 59,
pp. 53-70 (2013).
47. Cheng, M.-Y., Prayogo, D., Wu, Y.-W., and Lukito,
M.M. A hybrid harmony search algorithm for discrete
sizing optimization of truss structure", Automat. Construct.,
69, pp. 21-33 (2016).