
Scientia Iranica B (2018) 25(6), 3113{3132

Sharif University of Technology
Scientia Iranica

Transactions B: Mechanical Engineering
http://scientiairanica.sharif.edu

Lion pride optimization algorithm: A meta-heuristic
method for global optimization problems

A. Kaveha;� and S. Mahjoubib

a. Centre of Excellence for Fundamental Studies in Structural Engineering, Iran University of Science and Technology, Narmak,
Tehran, P.O. Box 16846-13114, Iran.

b. School of Civil Engineering, Iran University of Science and Technology, Narmak, Tehran, P.O. Box 16846-13114, Iran.

Received 14 June 2017; received in revised form 6 August 2017; accepted 13 January 2018

KEYWORDS
Structural
optimization;
Meta-heuristic
algorithm;
Lion pride
optimization
algorithm;
Global optimization;
Truss structures.

Abstract. This paper presents a new non-gradient nature-inspired method, Lion
Pride Optimization Algorithm (LPOA), to solve optimal design problems. This method
is inspired by the natural collective behavior of lions in their social groups \lion
prides". Comparative studies are carried out using �fteen mathematical examples and
two benchmark structural design problems in order to verify the e�ectiveness of the
proposed technique. The LPOA algorithm is also compared with other algorithms for
some mathematical and structural problems. The results have proven that the proposed
algorithm provides desirable performance in terms of accuracy and convergence speed in
all the considered problems.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Real-world structural optimization problems are highly
complex and multimodal due to e�ects of design con-
straints. The main objectives of the designers can
be categorized into four groups: minimum weight,
minimum cost, goal performance and a combination
of some desired purposes. Design variables (e.g., cross-
sectional areas and topology variables) are constrained
by di�erent accessible choices. Each decision has an
impact on the structural responses such as internal
forces, reaction forces, deections, and natural frequen-
cies, while no explicit relationship can easily be found.

Mathematical programming methods, such as
Linear Programming (LP), combinatorial optimiza-
tion, Quasi-Newton (QN), and nonlinear programming,
can be applied to optimization problems. In this type
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of optimization methods, the results highly depend
on the quality of the starting points. Besides, the
feasible search space of a real-world design problem
is characterized by a number of nonlinear constraints
and contains plenty of local optimums. These methods
in complex problems may fall into the trap of local
optima, and they are not suitable for these problems.

The global search meta-heuristic optimization
techniques, as an alternative approach to the conven-
tional mathematical methods, can escape from being
trapped in local minima and attempt to obtain near-
global optimum solutions. However, the latter methods
use non-deterministic approaches in which �nding the
optimum solutions is not guaranteed. Each meta-
heuristic method has a unique behavioral base, and
the performance of the algorithms is di�erent in each
problem space. For each algorithm, elevated perfor-
mance over one class of problems comes with weak
performance over other classes, and it is impossible
for one metaheuristic algorithm to derive optimal
solutions in all classes of problems. Thus, searching
for new meta-heuristic optimization algorithms is an
open problem [1].



3114 A. Kaveh and S. Mahjoubi/Scientia Iranica, Transactions B: Mechanical Engineering 25 (2018) 3113{3132

Nowadays, designers face new problems every day,
and the complexity of the design optimization problems
increases by recent advances in structural technologies.
In order to tackle complex issues arising from the design
problems, the necessity of proposing robust and new
algorithms is evident.

The meta-heuristic methods consist of one or
several search agents that explore the feasible region.
The movements of each search agent are guided by
a combination of randomness and one or more pre-
de�ned rules. The behavior of search agents mainly has
a natural inspiration. In the last decade, many new
nature-based stochastic optimization methods have
been developed, each of which mimics di�erent sources
of inspiration from nature; for instance, vibrating
particle systems algorithm [2]; water evaporation op-
timization [3]; social spider algorithm [4]; dragony
algorithm [5]; grey wolf optimizer [6]; charged system
search [7]; and �rey algorithm [8]. However, inspira-
tion has no border (e.g., arti�cial inspired mine blast [9]
that mimics the explosion of mine bombs; and harmony
search [10] that is inspired by the process of searching
for better harmony [10]. A collection of 17 recently
developed metaheuristics can be found in [11].

There are three di�erent optimization algorithms
in the literature, inspired by various aspects of a lion's
life. Rajakumar [12] proposed the lion's algorithm
based on the interaction between nomad and resident
lions and the �ght between resident lions and newly
mature lions. Likewise, Lion Pride Optimizer (LPO)
proposed by Wang et al. [13] and inspired by lions'
life was developed. Yazdani and Jolai [14] proposed
Lion Optimization Algorithm (LOA) that is based on
the behavior of nomad and resident lions. Cooper-
ative hunting of female lions in the pride, mating
in pride, male lions defending against new mature
resident males, mature lions defending against nomad
males, and migratory behavior of female lions have
been simulated in the mathematical concept of the
algorithm [15].

This article proposes a new algorithm called Lion
Pride Optimization Algorithm (LPOA) as an alterna-
tive approach to solving design optimization problems.
As the name implies, the LPOA algorithm mimics some
behaviors of lions in social groups called pride. A
lion pride consists of lionesses, o�spring, and a small
number of male lions, each member having speci�c
duties. Female lions have cooperative strategies for
hunting. Male lions protect their territory against
invading lions or other predators; for this reason, they
usually move within their dominated areas.

In this paper, �rst, the main inspiration of the
LPOA algorithm is presented. Then, the mathematical
concept of the algorithm is introduced comprehen-
sively. The relative e�ciency of the proposed algo-
rithm is next evaluated by solving some mathematical

problems and compared to �ve modern meta-heuristic
algorithms. Finally, two well-studied structural design
problems are solved by the proposed method to demon-
strate its e�ectiveness.

2. Inspiration from nature: background

2.1. Social groups
The lion (Panthera leo) is one of the largest and most
powerful members of the Felidae family. Unlike other
felids, they have a social innate behavior. Lions have
two types of social behavior:

1. Residents that are members of social groups-called
pride;

2. Nomads scattered in their habitats.

These categories are not mutually exclusive; a nomad
may become a resident, and vice versa; however, there
is a dichotomy between the two types of life [15].

All the members are engaged in a wide variety
of group-leveling activities, including group hunting,
communal club rearing, and group territoriality [15];
however, gender roles are almost speci�c. Each pride
consists of 2 to 4 adult males, several adult females, and
a number of sub adults and cubs [15]. It has been found
that the average group size is 4 to 5 with a maximum
of 15 [16].

2.2. Hunting
All the members typically hunt together as a team, and
each member has a persistent division of labors during
cooperative hunting. The hunting group generally
involves a formation, whereby some lionesses (wings)
circle prey, while others (centers) wait for prey to move
towards them [17]. It should be stated that hunting
groups are more cooperative when tackling di�cult
preys, such as elephants and bu�alos.

The observations of hunting group provide evi-
dence that not all lions present in the group participate
in the activity; some in a larger group sizes may `cheat'
(exploit the foraging activities of conspeci�cs) during
cooperative hunts [17]. An individual cheats only if it
spots the prey �rst and stops hunting if a companion
starts to hunt [18]. Therefore, individuals that do not
participate in group hunts withhold e�ort that would
increase the group's success rate [17].

2.3. Excursion
The territorial excursions of male lions provide e�ective
protection for the whole pride territory. Lions leave
scent marks within and on the borders of their territo-
ries in order to inform potential intruders, whose area
is already occupied [19], and nomadic lions can warn
by a sni� how recently a territorial male has passed
on patrol and, thus, how safe it would be to stroll
through the territory [20]. It can be mentioned that
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there is a considerable amount of overlap between pride
areas [15].

2.4. Mating
Lions have no particular breeding season. They mate
at any time of the year and, also, when females do not
rear cubs. A lioness may mate with multiple partners
when she is in heat [21].

2.5. Intragroup interaction
Male lions do not behave compassionately towards the
o�spring, even towards their own o�spring [22]. Males
compete for the exclusive access to a pride and father,
typically; only a single cohort of young females can
negotiate long-term territorial boundaries and breed
repeatedly over their lifetime [23]. Accordingly, mature
resident males oust young mature male lions from their
birth pride. A newly-matured lion is a new rival and
must be eliminated. Mature lions �ght each other, and
weaker ones must leave their natal prides.

2.6. Migration
Some sub-adult lionesses leave the pride to become
nomadic [15], and some of them migrate to other prides.
Most of them remain with their natal pride, and just
surplus lionesses are forced to leave their own group.

3. Lion Pride Optimization Algorithm (LPOA)

The LPOA is a population-based meta-heuristic algo-
rithm that mimics some parts of the lion's life, and
each agent is considered as a lion. In this technique,
the search process is far dissimilar to all of the conven-
tional optimization algorithms, such as Particle Swarm
Optimization (PSO), Genetic Algorithm (GA), Cuckoo
Search (CS), Simulated Annealing (SA), Harmony
Search (HS), and Tabu Search (TS). In the proposed
method, there are two di�erent types of search agents
with distinct types of de�ned rules. Moreover, they are
divided into sub-groups, namely prides. In addition,
each sub-group, which consists of females and males,
probes into the search space unity. Each sub-group
explores the de�ned space independently; therefore, the
cumulative knowledge acquired by each pride's member
is di�erent from that by other groups' members. The
migration mechanism engendering these distinctions
reduces progressively. This part of the method urges
the agents to probe into the search space better in the
early stages of the optimization process and, then, to
make them �nd near-global optimal solutions. Addi-
tionally, this mechanism can reduce the probability of
being trapped due to transferring information between
prides.

The mathematical model of the proposed algo-
rithm is provided in the following.

3.1. The formation of pride groups
The lions and lionesses are the search agents of the pro-
posed algorithm, and each agent explores the de�ned
search space systematically.

The �rst step is to initialize the �rst population
of the lions and form pride groups randomly:

amin;i < ai < amax;i i = 1; 2; � � � ; nv; (1)

lionj = [a1;j ; � � � ; an;j ] j = 1; 2; � � � ; nl; (2)

Pridek =

0B@ lion1;k
...

lionnr;k

1CA =

0B@ a1;1;k � � � a1;nv;k
...

. . .
...

anr;1;k � � � anr;nv;k

1CA
k = 1; 2; � � � ; np; (3)

where lionj determines the initial position of the jth
agent; amin;j and amax;j represent the minimum and
maximum permissible values for the ith variable; aj
indicates a random value between amin;j and amax;j ;
nv is the number of design variables; nl is the number
of total population; pridek includes the resident lions'
position in pride k; nr is the population of residents;
np represents the number of prides.

Fitness value of each lion is computed by evaluat-
ing the objective function as follows:

�tj = objfun(lionj = [a1;j ; � � � ; an;j ]
j = 1; 2; � � � ; nl; (4)

where objfun is the objective function, and fitj is the
�tness of the jth agent.

3.2. Main loop
Mathematical modeling of the LPOA with some char-
acteristics of lions' life is presented in this subsection.
Some variables that change in each iteration are de-
scribed below:

Di = DF � ampi i = 1; 2; � � � ; nv; (5)

ampi = amax;i � amin;i i = 1; 2; � � � ; nv; (6)

where D represents diversi�cation matrix; DF is the
diversi�cation factor that is constant in each iteration;
however, it can be changed during the process of opti-
mization. By examining di�erent changes of this factor,
it should decrease during the process in order to �nd
near-global solutions. Figure 1 shows di�erent types of
changes of the diversi�cation factor versus the number
of iterations. Furthermore, the diversi�cation factor
can be changed adaptively according to the obtained
�tness values or exploration success rate. In this
study, the diversi�cation factor declines rectilinearly
with respect to the increasing number of iterations in
the optimization procedure.
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Figure 1. Diversi�cation factor change diagram.

3.2.1. Hunting
The formulation of the cooperative hunting of lionesses
is described as follows: All female lions in each pride are
sorted as their �tness; after that, they are grouped into
three groups. The best female lions' group members
are named as \chasers". The second best group'
members are labeled as \wingers", and the third group
is called as \cheaters". Figure 2 shows the process of
dividing female lions into these three general groups.
Afterwards, the hunting subgroups are formed by three
members, each of which is selected unmethodically
from di�erent general groups. In other words, each
general group has a member in hunting subgroups.
After the formation of three-member hunting groups,
each group follows di�erent prey to catch. The prey
of each subgroup is selected randomly from the best
position of all pride members.

Now, the position of each chaser changes using
Eq. (7):

Chasernew = Chaser +H1 � rand + (D)

� (2 rand � 1); (7)

H1 = (Prey � Chaser); (8)

where Chasernew and Chaser are the new and existing
positions of each chaser lion, respectively; rand repre-
sents a random number between zero and one; and Prey
indicates the position of the prey.

The new position of wing hunters in each iteration
follows the equation mentioned below:

Wingernew = Prey +H2 � jW j � rand + (D)

� (2 rand � 1); (9)

where Winger i;new indicates the new position of
Winger hunter lion, and H2 is a random unit vector
perpendicular to vector W considered as follows:

W = Prey �Winger ; (10)

jW j =
q
W 2

1 + � � �+W 2
n : (11)

Finally, Eq. (12) de�nes the movements of the cheater:

Cheaternew = Prey +H3 � rand + (D)

� (2 rand � 1); (12)

H3 = (Prey � Cheater); (13)

where Cheaternew represents the new position of the
Winger hunter lion, and Cheater is the present position
of the Winger hunter lion.

The schematic diagram of movements of each
hunter is depicted in Figure 3.

3.2.2. Excursion
The simulation of male lions' excursion is formulated
by the following equation:

Figure 2. The formation of general hunting groups in a pride with twelve lionesses.
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Figure 3. The schematic strategy of lionesses to catch
the prey.

Male Lionnew =Territory +E � (D)�(2 rand�1);
(14)

where Male Lionnew indicates the new position of the
male lion, and Territory is formulated as follows:

Territory i = Best Positions (rand � TR)i; (15)

Best Positions = sort [Male best Positions;

Female best Positions]: (16)

Best Positions represent the collective understanding
of the pride's members about the search space. The
cumulative best positions of the resident lions (includ-
ing both males and females) are sorted from the best to
the worst according to the corresponding �tness; E is
an excursion constant; TR indicates the territory ratio.
In accordance with Eq. (15), just rand �TR percent of
the best memories are saved in Territory.

3.2.3. Mating
M percent of the lionesses (mating probability) in each
pride mate with single or multiple resident lions. The
lion(s) is/are selected randomly from the same pride as
the selected female.

Two o�spring breed in each mating according to
the following equations:

O�spring1 = � � Female Lion +
nmX
l=1

1� �Pnm
l=1 Sl

�Male Lion l � Sl; (17)

O�spring2 = (1��)� Female Lion +
nmX
l=1

�Pnm
l=1 Sl

�Male Lion l � Sl; (18)

where Female Lion indicates the best position of the se-
lected lioness; Male Lion l represents the best position
of the lth lion in the pride; Sl equals 1 if male l is in the
coalition; otherwise, it equals 0; nm is the number of
resident males in the pride; � is a randomly generated

number with a normal distribution, mean value of 0.5,
and standard deviation of 0.1. It is assumed that the
chance of giving birth to a female or a male lion is
50:50.

3.2.4. Intragroup interaction
This behavior is simulated according to the following
rule: The number of male lions in each pride is
always in equilibrium; in each iteration, weaker males
(according to their �tness values) must leave the pride.

3.2.5. Migration
The simulation of the natural phenomenon of the
migration of resident lionesses is formulated as follows:
The lionesses in each pride migrate with the probability
of immigration rate (I) in every iteration. Further, the
number of females in each pride is always constant.
As a result, surplus female lions in each pride get out
of the pride and become nomad. In this mechanism,
the knowledge of the migratory lioness (the existing
position and the best position of the agent so far) is
transferred into the new pride.

Finally, the pseudo codes of the LPOA are de�ned
in Figure 4, and a owchart of the proposed algorithm
is illustrated in Figure 5.

4. Performance evaluation in mathematical
problems

It is common in optimization frameworks to evaluate
the performance of the new algorithms in compari-
son with other algorithms on a set of mathematical
functions. All 15 functions of benchmark problems
based on arti�cially-created functions, such as the CEC
2015 [24], are considered to compare the presented al-
gorithm with the known robust algorithms in structural
problems.

Test functions are considered with di�erent char-
acteristics to test the performance of the LPOA algo-
rithm from di�erent points of view. These comparative
functions can be divided into four types with respect to
their de�nitions. Unimodal functions have single opti-
mum and measure the exploitation and convergence of
an algorithm. In hybrid functions, the variables are
randomly divided into some subsets; then, di�erent
basic functions are used for di�erent subsets [24].
For comparing the local optima relief in addition to
other features, multimodal functions are de�ned with
multiple optimum positions. The composite functions
are mostly the combined, rotated, shifted, and biased
versions of unimodal and multi-modal test functions.

The idea is to compose the standard benchmark
functions to construct a more challenging function
with a randomly located global optimum and several
randomly located deep local optima [25]. The global
optimum position shift in each type of functions accord-
ing to the shift data is presented in Problem De�nitions



3118 A. Kaveh and S. Mahjoubi/Scientia Iranica, Transactions B: Mechanical Engineering 25 (2018) 3113{3132

Figure 4. Pseudocode of the LPOA.

Table 1. Description of unimodal benchmark functions.

Category

Function name Function F �i
F1 Rotated high conditioned elliptic function F1(x) = f1(M(x� o1)) + F �1 100

F2 Rotated cigar function F2(x) = f2(M(x� o2)) + F �2 200

Table 2. Description of multimodal benchmark functions.

Function name Function F �i
F3 Shifted and rotated Ackley's function F2(x) = f5 (M(x� o2)) + F �2 300

F4 Shifted and rotated Rastrigin's function F4(x) = f8

�
M
�

5:12(x�o4)
100

��
+ F �4 400

F5 Shifted and rotated Schwefel's function F5(x) = f9

�
M
�

1000(x�o5)
100

��
+ F �5 500

and Evaluation Criteria for the CEC 2015 Competition
on Learning-based Real-Parameter Single-Objective
Optimization [24]. Mathematical test functions that
are considered in this article are given in Tables 1-
4. Di�erent basic functions are used to construct the
mentioned benchmark problems. These functions are
depicted in Table 5. Furthermore, Figure 6 shows the
perspective view of the �tness functions for the test
cases considered in this section.

In this section, �ve modern optimization meth-
ods are compared to the LPOA consisting of Par-
ticle Swarm Optimization (PSO) algorithm accred-
ited to Kennedy and Eberhart [26], colliding bodies
optimization developed by Kaveh and Mahdavi [27],
Enhanced Colliding Bodies Optimization (ECBO) al-
gorithm proposed by Kaveh and Ilchi Ghazaan [28],
water cycle algorithm proposed by Eskandar et al. [29],
the Lion Optimization Algorithm (LOA) proposed
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Figure 5. Simpli�ed owchart of the LPOA.

by Yazdani and Jolani [14], and The Whale Opti-
mization Algorithm proposed (WOA) by Mirjalili and
Lewis [30].

The same search ranges are de�ned for all test
functions as [�100; 100]D. In addition, all optimization
parameters in each algorithm employed are assumed
as recommended in the related articles. In all cases,
the population size is set to 30, and 10-dimensional
functions are used in this research. In addition, the
maximum Number of Function Evaluations (NFE) in
each function is set to 30000. Furthermore, 50 separate
runs are carried out for each algorithm similar to the
setting of the CEC 2015 single-objective optimization
competition.

4.1. Adjusting LPOA parameters
Sensitivity analysis is performed in this section to
evaluate how the parameters of the LPOA inuence
the results. Five related parameters in the proposed
algorithm are analyzed in di�erent mathematical func-
tions to �nd a proper set of parameters due to the
scatter plots of each parameter versus the �tness values
and, eventually, have proper behavior in the process of
optimization. In addition, the samples are taken from
the marginal distribution of each factor.

Four mathematical test problems of F1, F3, F6,
and F9 are used to tune the parameters of the proposed
algorithm. These functions are representative of dif-
ferent types of the considered mathematical functions.
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Table 3. Description of hybrid benchmark functions.

General de�nitions

F (x) = g1(M1z1) + g2(M2z2) + � � �+ gN (MNzN ) + F �(x), z = [z1; z2; � � � ; zN ];

z1 = [ys1 ; ys2 ; � � � ; ysn1
];

z2 = [ysn1+1 ; ysn1+2 ; � � � ; ysn1+n2
]; � � � ; zN =

24ysN�1P
i=1

ni+1

; ysN�1P
k=1

ni+2

; � � � ; ysD
35 ;

y = x� oi, S = randperm(1; D);

ni : dimension for each basic function,
NP
i=1

ni = D

n1 = [p1D]; n2 = [p2D]; � � � ; nN�1 = [pN�1D]; nN�1 = [pN�1D], nN = D � N�1P
i=1

ni

p : used to control the percentage of gi(x)

Function name Function F �i

F6 Hybrid Function 1
(N = 3)

g = ff9; f8; f1g, p = [0:3; 0:3; 0:4] 600

F7 Hybrid Function 2
(N = 4)

g = ff7; f6; f4; f14g, p = [0:2; 0:2; 0:3; 0:3] 700

F8 Hybrid Function 3
(N = 5)

g = ff14; f12; f4; f9; f1g, p = [0:1; 0:2; 0:2; 0:2; 0:1] 800

The selected set of parameter values of LPOA is
depicted in Table 6.

4.2. Numerical results and statistical test
The comparative results given from the mentioned
algorithm are tabulated in Tables 7 and 8. Table 7
shows information about the minimum, maximum,
and standard deviations of the corresponding objective
function test, and the values of Table 8 indicate
the average error rate derived from the considered
algorithms. The average error rate datasets can be
considered as a means for measuring the performance
of optimization techniques. The results imply that
the LPOA is able to generate competitive answers to
its counterparts. It can be noted that the proposed
optimization technique �nds the best answers in 13 out
of 15 function problems.

The comparative convergence curve of some ob-
jective function is illustrated in Figure 7. The con-
vergence curves show that the LPOA works well; in
most cases, the LPOA has higher e�ciency than other
considered algorithms do, for the benchmark functions.

For the validation of signi�cance of results, it
is assumed that all algorithms are performed on the

null hypothesis, and all algorithms are similar when
solving these unconstrained functions. Friedman rank
test [31,32] and di�erent post-hoc analyses were em-
ployed together to show the di�erence between algo-
rithms in a statistically signi�cant way. Suppose that
a level of signi�cance � = 0:05 was selected, and the
hypothesis would be rejected only if the value of p
yielded by the test was not greater than the value of
0.05.

Table 9 depicts the ranks computed through the
Friedman test, and the LPOA is the best performing
algorithm in the study. In addition, p value obtained
by the test is 0.00. Consequently, the Friedman test
strongly suggests the existence of signi�cant di�erences
among the considered algorithms with a signi�cance
level of 0.05, as assumed.

The Friedman test only can detect signi�cant
di�erences over the whole multiple comparisons, being
unable to establish proper comparisons between some
of the algorithms considered [33]. For this reason,
Holm [34], Rom [35], Hommel [36], Finner [37], Holland
and Copenhaver [38] and Li [39] post-hoc procedures
are performed in order to �nd the concrete pairwise
comparisons, which produce di�erences.
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Table 4. Description of composition benchmark functions.

General de�nitions

F (x) =
NP
i=1
f!�i [�igi(x) + biasi]g+ f�, wi = 1vuut DP

j=1
(xj�oij)2

exp

0B@� DP
j=1

(xj�oij)2

2D�2
i

1CA, !i = wi=
nP
i=1

wi

Function name Function F �i

F9 Composition Function 1
(N = 3)

g = ff9; f8; f12g,
� = [20; 20; 20],

� = [1; 1; 1],

bias = [0; 100; 200] + F �9

900

F10 Composition Function 2
(N = 3)

g = fF6; F7; F8g,
� = [10; 30; 50],

� = [1; 1; 1],

bias = [0; 100; 200] + F �10

1000

F11 Composition Function 3
(N = 5)

g = ff12; f8; f9; f6; f1g,
� = [10; 10; 10; 20; 20],

� = [10; 10; 2:5; 25; 1e� 6],

bias = [0; 100; 200; 300; 400] + F �11

1100

F12 Composition Function 4
(N = 5)

g = ff9; f8; f1; f14; f11g,
� = [10; 20; 20; 30; 30],

� = [0:25; 1; 1e� 7; 10; 10],

bias = [0; 100; 100; 200; 200] + F �12

1200

F13 Composition Function 5
(N = 5)

g = fF8; f8; F6; f9; f14g,
� = [10; 10; 10; 20; 20],

� = [1; 10; 1; 25; 10],

bias = [0; 100; 200; 300; 400] + F �13

1300

F14 Composition Function 6
(N = 7)

g = ff11; f7; f9; f14; f1; f2; f8g,
� = [10; 20; 30; 40; 50; 50; 50],

� = [10; 2:5; 25; 10; 1e� 6; 1e� 6; 10],

bias = [0; 100; 200; 300; 300; 400; 400] + F �14

1400

F15 Composition Function 7
(N = 10)

g = ff8; f6; f11; f9; f4; f3; f11; f14; f13; f5g,
� = [10; 10; 20; 20; 30; 30; 40; 40; 50; 50],

� = [0:1; 0:25; 0:1; 0:025; 1e� 3; 0:1; 1e� 5; 10; 0:025; 1e� 3],

bias = [0; 100; 100; 200; 200; 300; 300; 400; 400; 500] + F �14

1500
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Table 5. Description of the basic functions.

Function name Function

F1 High conditioned elliptic f1(x) =
DP
i=2

(106)
i�1
D�1 x2

i

F2 Cigar f2(x) = x2
1 + 106

DP
i=2

x2
i

F3 Discus f3(x) = 106x2
1 +

DP
i=2

x2
i

F4 Rosenbrock f4(x) =
D�1P
i=1

(100(x2
i � xi+1)2 + (xi � 1)2)

F5 Ackley f5(x) = �20 exp

 
�0:2

s
1
D

DP
i=1

x2
i

!
� exp

�
1
D

DP
i=1

cos(2�xi)
�

+ 20 + e

F6 Weierstrass f6(x) =
DP
i=1

�
kmaxP
k=0

�
ak cos(2�bk(xi + 0:5))

���D kmaxP
k=0

[ak cos(2�bk � 0:5)],

a = 0:5, b = 3, kmax = 20

F7 Griewank f7(x) =
DP
i=1

x2
i

4000 �
DQ
i=1

cos
�
xip
i

�
+ 1

F8 Rastrigin f8(x) =
DP
i=1

(x2
i � 10 cos(2�xi) + 10)

f9(x) = 418:9829�D � DP
i=1

g(zi), zi = xi + 4:209687462275036e+ 002

F9 Modi�ed Schwefel g(zi)=

8>>>>>>>>><>>>>>>>>>:

zi sin
�jzij 12 � jzij�500

(500� mod(zi; 500)) sin
�pj500�mod(zi; 500)j�� (zi�500)2

10000D zi>500

(mod(jzij; 500)� 500) sin
�pjmod(jzij; 500)�500j�� (zi+500)2

10000D zi<�500

9>>>>>>>>>=>>>>>>>>>;
F10 Katsuura f10(x) = 10

D2

DQ
i=1

 
1 + i

32P
j=1

j2jxi�round(2jxi)j
2j

! 10
D1:2

� 10
D2

F11 HappyCat f11(x) =
���� DP
i=1

x2
i �D

���� 14 +
�

0:5
DP
i=1

x2
i +

DP
i=1

xi
�
=D + 0:5

F12 HGBat f12(x) =

������ DP
i=1

x2
i

�2

�
�
DP
i=1

xi
�2
����� 12 +

�
0:5

DP
i=1

x2
i +

DP
i=1

xi
�
=D + 0:5

F13 Expanded Griewank f13(x) = f7(f4(x1; x2)) + f7(f4(x2; x3)) + � � �+ f7(f4(xD�1; xD)) + f7(f4(xD; x1))
plus Rosenbrock f14(x) = g(x1; x2) + g(x2; x3) + � � �+ g(xD�1; xD) + g(xD; x1)

F14 Expanded sca�er g(x; y) = 0:5 +
�
sin2

�p
x2+y2

��0:5
�

(1+0:001(x2+y2))2

Table 6. Parameter values of LPOA in mathematical
functions.

Parameter Value
Number of prides 5
Lions in each pride 6
Male lions in each pride 2
Female lions in each pride 4
Territory ratio 0.4
Mating probability 0.6
Immigration rate 0.6
diversi�cation factor 10e-03 to 0

Table 10 shows p values obtained through the
application of the considered post-hoc methods. Ad-
justed p values can be compared directly with the

chosen signi�cance level. It can be seen that the null
hypothesis is rejected subsequently as all output values
are smaller than � = 0:05, and the results of LPOA are
signi�cantly better than other techniques statistically.

5. Performance evaluation in constrained
design problems

Design optimization problems are often constrained
and complex with a lot of local optima and frequently
limited by di�erent constraints as material properties,
feasible strength, displacements, load cases, and type
or size of members. Thus, in order to demonstrate
the e�ciency of the proposed methodology, three well-
studied design engineering benchmark problems are
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Figure 6. 2D Search space representations of benchmark mathematical functions.

solved with LPOA. In addition, the solutions are
compared with di�erent state-of-the-art approaches.

The LPOA algorithm is coded in MATLAB, and
structural analysis is performed with the direct sti�ness
method.

The penalty approach is used for constraint han-
dling. The penalty function method has been the
most popular constraint-handling technique due to its
simple principle and ease of implementation [40]. If
the constraints are not violated, the penalty will be
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Table 7. Comparative results on mathematical test functions.

Function Algorithm
Present work PSO CBO ECBO WCA LOA WOA

F1
Min. 4.67E+03 5.20E+03 8.14E+04 3.18E+04 2.47E+03 3.31E+05 9.99E+05
Max. 3.18E+05 1.60E+06 3.41E+06 6.65E+06 2.91E+06 9.38E+06 2.38E+07

St. Dev 9.64E+04 3.99E+05 7.68E+05 1.14E+06 6.03E+05 1.58E+06 5.21E+06

F2
Min. 2.00E+02 2.03E+02 2.05E+02 5.91E+02 2.03E+02 2.02E+04 6.03E+05
Max. 1.09E+04 3.15E+04 3.36E+04 3.49E+04 3.40E+04 2.74E+07 1.77E+07

St. Dev 3.95E+03 9.63E+03 1.15E+04 9.99E+03 1.37E+04 5.76E+06 4.37E+06

F3
Min. 3.00E+02 3.20E+02 3.20E+02 3.20E+02 3.20E+02 3.20E+02 3.20E+02
Max. 3.20E+02 3.20E+02 3.21E+02 3.21E+02 3.20E+02 3.20E+02 3.21E+02

St. Dev 3.03E+00 8.23E-02 1.27E-01 1.29E-01 5.91E-02 4.72E-02 1.30E-01

F4
Min. 4.02E+02 4.03E+02 4.03E+02 4.21E+02 4.16E+02 4.08E+02 4.19E+02
Max. 4.23E+02 4.21E+02 4.31E+02 4.37E+02 4.75E+02 4.33E+02 5.04E+02

St. Dev 3.76E+00 4.50E+00 7.94E+00 4.49E+00 1.34E+01 6.09E+00 1.74E+01

F5
Min. 5.07E+02 5.07E+02 5.07E+02 5.51E+02 6.22E+02 8.26E+02 1.00E+03
Max. 2.52E+03 1.46E+03 1.46E+03 1.43E+03 2.09E+03 1.51E+03 2.17E+03

St. Dev 1.65E+02 2.53E+02 2.17E+02 2.41E+02 3.32E+02 1.60E+02 2.82E+02

F6
Min. 7.59E+02 7.12E+02 7.98E+02 8.30E+02 6.50E+02 1.39E+03 2.80E+03
Max. 1.15E+03 6.22E+03 8.29E+04 1.02E+04 1.10E+04 9.29E+03 1.38E+06

St. Dev 5.05E+02 1.28E+03 2.02E+04 2.89E+03 3.94E+03 2.14E+03 4.13E+05

F7
Min. 7.00E+02 7.00E+02 7.01E+02 7.01E+02 7.02E+02 7.02E+02 7.03E+02
Max. 7.02E+02 7.04E+02 7.05E+02 7.04E+02 7.06E+02 7.03E+02 7.10E+02

St. Dev 2.95E-01 8.12E-01 7.62E-01 4.61E-01 1.23E+00 3.76E-01 1.40E+00

F8
Min. 8.18E+02 8.23E+02 1.09E+03 8.21E+02 8.23E+02 1.20E+03 1.44E+03
Max. 3.91E+03 1.39E+04 5.39E+04 2.63E+04 2.56E+04 4.32E+03 2.62E+04

St. Dev 7.18E+02 3.89E+03 1.36E+04 8.97E+03 5.78E+03 7.23E+02 5.92E+03

F9
Min. 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.00E+03
Max. 1.00E+03 1.00E+03 1.00E+03 1.00E+03 1.11E+03 1.00E+03 1.00E+03

St. Dev 4.58E-02 8.78E-02 1.83E-01 5.99E-02 1.80E+01 1.53E-01 2.94E-01

F10
Min. 1.33E+03 1.34E+03 1.75E+03 1.25E+03 1.45E+03 1.66E+03 1.81E+03
Max. 3.09E+03 9.01E+03 3.72E+04 3.47E+04 1.65E+04 7.19E+03 5.49E+04

St. Dev 1.24E+03 1.79E+03 8.24E+03 7.46E+03 4.28E+03 1.29E+03 1.41E+04

F11
Min. 1.10E+03 1.10E+03 1.11E+03 1.11E+03 1.12E+03 1.11E+03 1.11E+03
Max. 1.30E+03 1.63E+03 1.59E+03 1.58E+03 1.65E+03 1.41E+03 1.77E+03

St. Dev 2.33E+01 8.11E+01 1.19E+02 7.75E+01 8.24E+01 1.21E+02 1.41E+02

F12
Min. 1.30E+03 1.30E+03 1.30E+03 1.30E+03 1.30E+03 1.30E+03 1.30E+03
Max. 1.30E+03 1.30E+03 1.30E+03 1.30E+03 1.31E+03 1.31E+03 1.32E+03

St. Dev 8.08E-01 8.46E-01 8.74E-01 4.48E-01 2.07E+00 1.16E+00 3.96E+00

F13
Min. 1.30E+03 1.30E+03 1.30E+03 1.30E+03 1.30E+03 1.30E+03 1.30E+03
Max. 1.30E+03 1.30E+03 1.30E+03 1.30E+03 1.30E+03 1.30E+03 1.30E+03

St. Dev 1.76E-04 6.82E-03 1.47E-03 2.94E-04 3.64E-03 1.24E-03 5.48E-03

F14
Min. 1.50E+03 1.50E+03 4.33E+03 4.34E+03 1.50E+03 1.55E+03 4.37E+03
Max. 7.15E+03 1.19E+04 1.19E+04 1.14E+04 1.29E+04 8.51E+03 8.57E+03

St. Dev 9.88E+02 2.72E+03 2.27E+03 2.63E+03 2.91E+03 1.44E+03 1.44E+03

F15
Min. 1.60E+03 1.60E+03 1.60E+03 1.60E+03 1.60E+03 1.60E+03 1.60E+03
Max. 1.60E+03 1.60E+03 1.60E+03 1.61E+03 1.60E+03 1.60E+03 1.61E+03

St. Dev 8.41E-12 1.11E-11 3.41E-12 8.20E-01 5.20E-13 6.70E-01 3.37E+00
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Table 8. Average error rates of the algorithms obtained in mathematical test functions.

Function Algorithm
Present work PSO CBO ECBO WCA LOA WOA

F1 46755.922 316255.297 927865.185 681181.529 271115.021 1885622.710 7615642.072
F2 4802.406 10030.057 11700.583 10220.590 10831.886 4017996.482 6194263.355
F3 18.028 20.356 20.392 20.419 20.027 20.235 20.193
F4 15.972 10.070 15.060 28.708 37.446 19.249 49.496
F5 400.033 400.756 434.061 390.749 1019.646 761.286 1048.991
F6 429.211 1263.613 14949.533 3091.745 4815.625 3025.786 329233.543
F7 1.058 1.509 2.233 2.350 3.303 2.338 6.207
F8 1490.274 4504.074 13539.852 8455.109 4348.638 1470.065 6218.680
F9 100.211 100.281 100.473 100.416 103.648 100.574 100.723
F10 999.446 1882.728 9127.900 5307.194 3877.947 2091.119 12630.115
F11 43.055 299.089 270.649 317.711 315.165 226.392 357.387
F12 101.471 102.519 101.730 103.213 105.660 104.614 108.898
F13 0.030 0.069 0.031 0.032 0.032 0.032 0.036
F14 1954.700 6332.226 6068.181 5450.378 5491.305 2964.175 6374.899
F15 100.000 100.000 100.000 104.530 100.000 100.988 104.733

Figure 7. Comparative convergence curves obtained from the selected algorithms for mathematical functions.
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Table 9. Friedman test results for comparing the
proposed methods with other algorithms on 15
mathematical datasets.

Algorithm Rank

Present work 1.3667

PSO 3.2333

CBO 4.1667

ECBO 4.3333

WCA 4.4333

LOA 4

WOA 6.4667

zero; otherwise, the value of the penalty is calculated
by dividing the violation of the allowable limit by the
limit itself. The constraint violation penalty can be
stated as follows:

fpenalty(x) = (1 + "1 � v)"2 ; v =
cX
i=1

vi: (19)

v is violation ratio that is de�ned as in Eq. (19), and
c is the number of constraints where "1 and "2 are
parameters that penalize the unfeasible solutions more
severely. "1 is taken as unity, and "2 starts from 1.5
and linearly increases to 6 in all design problems.

If the constraint is satis�ed : vi = 0;

If the constraint is violated : vi =
����1� b�i

bi

���� ; (20)

where b�i is the upper bound constraint boundary value,
and bi is the value of the related property value of the
structure. Penalized �tness is introduced as follows:

P (x) = f(x)� fpenalty(x); (21)

where f(x) is the �tness function, which generally
is taken as the weight of the structure in a design
optimization problem.

The examples considered from the literature in-
clude:

Table 11. Parameter values of the LPOA in design
functions.

Parameter Value

Number of prides 3-7

Lions in each prides 4-7

Male lions in each prides 1-2

Female lions in each prides 3-6

Territory ratio 0.2

Mating probability 0.1

Immigration rate 0.2

Diversi�cation factor 0.1 to 0.0001

- A pressure vessel design;

- A 52-bar planar truss design;

- A 72-bar spatial truss design.

Parameter values of LPOA in the evaluation of struc-
tural benchmark problems are depicted in Table 11.

5.1. A 52-bar planar truss design
The 52-bar planar truss is depicted in Figure 8
schematically. The members of this structure are
divided into 12 groups: (1) A1-A4, (2) A5-A10, (3)
A11-A13, (4) A14-A17, (5) A18-A23, (6) A24-A26,
(7) A27-A30, (8) A31-A36, (9) A37-A39, (10) A40-
A43, (11) A44-A49, and (12) A50-A52. The material
density is 7860.0 kg/m3, and the modulus of elasticity
is 2:07�105 MPa. The members are subjected to stress
limitations of �180 MPa. Both loads, px = 100 kN and
py = 200 kN, are considered, and the discrete variables
are selected from Table 12.

This benchmark example has been optimized by
di�erent researchers; Lee and Geem [41] designed the
problem by employing a harmony search algorithm.
Li et al. [42] utilized the particle swarm optimization
algorithm and the heuristic particle swarm optimizer
to solve the design problem; Wu and Chow [43]
found the solution of the problem by implementing
the steady-state genetic algorithm; Sadollah et al. [9]
carried out the optimized design using Mine Blast

Table 10. z-value, unadjusted and adjusted p-values for the Friedman test (LPOA is the control method).

Algorithm z Unadjusted p pHolm pRom pHommel pFinner pHolland pLi

WOA 6.4654 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

WCA 3.8877 0.0001 0.0005 0.0005 0.0004 0.0003 0.0005 0.0001

ECBO 3.7609 0.0002 0.0007 0.0006 0.0007 0.0003 0.0007 0.0002

CBO 3.5496 0.0004 0.0012 0.0012 0.0012 0.0006 0.0012 0.0004

LOA 3.3384 0.0008 0.0017 0.0017 0.0017 0.0010 0.0017 0.0009

PSO 2.3664 0.0180 0.0180 0.0180 0.0180 0.0180 0.0180 0.0180
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Figure 8. Schematic of a 52-bar planar truss.

Algorithm (MBA), while Cheng and Prayogo [44] as
well as Mirjalili and Lewis [30] implemented symbiotic
organisms (SOS) and Whale Optimization Algorithm
(WOA) to solve the 52-bar planar truss design problem,
respectively.

The LPOA proceeds until the maximum number
of 300 iterations. Here, 20 search agents are uti-
lized for solving the design problem, and 20 individ-
ual optimization runs have been carried out for this
benchmark example. The corresponding results are
presented in Table 13. The answers are rounded to
the nearest integer number during the implementation
of the optimization algorithm, since the variables of
the problem are discrete. In accordance with the
results, it can be seen that the best optimal answer
is obtained by the LPOA, which is equal to 1902.28 kg
achieved in 5980 analyses. In addition, the average and
standard deviations of 20 individual optimal solutions
exploited by the proposed algorithm are 1944.3478 kg
and 54.8133 kg, respectively. The results show that the
LPOA has better performance than other mentioned
algorithms' performance in �nding the best optimal
solutions.

The stress ratios and stress values of two solutions

Table 12. The available cross-section areas of the AISC
code.

No. in.2 No. in.2 No. in.2 No. in.2

1 0.111 17 1.563 33 3.84 49 11.5

2 0.141 18 1.62 34 3.87 50 13.5

3 0.196 19 1.8 35 3.88 51 13.9

4 0.25 20 1.99 36 4.18 52 14.2

5 0.307 21 2.13 37 4.22 53 15.5

6 0.391 22 2.38 38 4.49 54 16

7 0.442 23 2.62 39 4.59 55 16.9

8 0.563 24 2.63 40 4.8 56 18.8

9 0.602 25 2.88 41 4.97 57 19.9

10 0.766 26 2.93 42 5.12 58 22

11 0.785 27 3.09 43 5.74 59 22.9

12 0.994 28 1.13 44 7.22 60 24.5

13 1 29 3.38 45 7.97 61 26.5

14 1.228 30 3.47 46 8.53 62 28

15 1.266 31 3.55 47 9.3 63 30

16 1.457 32 3.63 48 10.85 64 33.5

of LPOA and IMCSS and stress values in each member
are shown in Figures 9 and 10, respectively. Moreover,
the convergence curves of the LPOA are provided in
Figure 11.

5.2. A 72-bar spatial truss
A 72-bar spatial truss structure is depicted in
Figure 12. The material density is 0.1 lb/in3

(2,767.990 kg/m3), and the modulus of elasticity is
10,000 ksi (68,950 MPa) in this example. The nodes
are subjected to the displacement limits of 0.25 in
(0.635 cm), and the elements are subjected to the stress
limits of 25 ksi (172.375 MPa).

Then, 72 members of the structure are classi�ed
into 16 variable groups: (1) A1-A4, (2) A5-A12, (3)
A13-A16, (4) A17-A18, (5) A19-A22, (6) A23-A30, (7)
A31-A34, (8) A35-A36, (9) A37-A40, (10) A41-A48,
(11) A49-A52, (12) A53-A54, (13) A55-A58, (14) A59-
A66 (15), A67-A70, and (16) A71-A72.

Two di�erent optimization case studies are imple-
mented as follows:

Case 1: The discrete variables are selected from the
set D=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0,
1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2,
2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2] (in2).
In addition, Load Case 1 is applied to the truss, as
depicted in Table 14;

Case 2: The discrete variables are selected from
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Table 13. Optimized designs obtained for the 52-bar planar truss.

Algorithm
Element group variables (mm2) Weight

(kg)1 2 3 4 5 6 7 8 9 10 11 12
Present

work
4360.45 1161.29 285.16 3703.22 940.00 494.19 2290.32 1008.39 388.39 1283.87 1161.29 494.19 1902.283

HS [41] 4658.06 1161.29 506.45 3303.22 940.00 494.19 2290.32 1008.39 2290.32 1535.48 1045.16 506.45 1906.76

PSO [42] 4658.06 1374.19 1858.06 3206.44 1283.87 252.26 3303.22 1045.16 126.45 2341.93 1008.38 1045.16 2230.16

HPSO [42] 4658.06 1161.29 363.23 3303.22 940.00 494.19 2238.71 1008.39 388.39 1283.87 1161.29 792.26 1905.495

MBA [9] 4658.06 1161.29 494.19 3303.22 940.00 494.19 2238.71 1008.39 494.19 1283.87 1161.29 494.19 1902.605

SOS [44] 4658.06 1161.29 494.19 3303.22 940.00 494.19 2238.71 1008.39 494.19 1283.87 1161.29 494.19 1902.605

WOA [30] 4658.06 1161.29 494.19 3303.22 940.00 494.19 2238.71 1008.39 494.19 1283.87 1161.29 494.19 1902.605

GA [43] 4658.06 1161.29 645.16 3303.22 1045.16 494.19 2477.141 1045.16 285.16 1696.77 1045.16 641.29 1970

Figure 9. Member stress ratios of the best solution obtained by LPOA and IMCSS.

AISC code cross-sections as illustrated in Table 12,
and Load Case 2 applied to the truss is shown in
Table 14.

The 72-bar spatial truss problem has been studied by
many researchers and, also, with di�erent algorithms.
Wu and Chow used Genetic Algorithm (GA) [43]; Li
et al. [45] utilized Particle Swarm Optimization (PSO),
Particle Swarm Optimizer with Passive Congregation
(PSOPC), and Heuristic Particle Swarm Optimizer
(HPSO); Kaveh and Farhoudi [46] employed Dolphin
Echolocation (DE); Cheng et al. [47] used Hybrid
Harmony Search (HHS) algorithm; Sadollah et al. [9]
imposed Mine Blast Algorithm (MBA) to solve this
benchmark problem.

Table 14. Load cases applied to the 72-bar spatial truss
structure.

Node Case 1 (kips) Case 2 (kips)
PX PY PZ PX PY PZ

17 5.0 5.0 5.0 0.0 0.0 5.0
18 0.0 0.0 0.0 0.0 0.0 5.0
19 0.0 0.0 0.0 0.0 0.0 5.0
20 0.0 0.0 0.0 0.0 0.0 5.0

It employed 50 search agents over 200 iterations
and 20 independent runs for solving each case of the
problem. The LPOA comparative solutions of the
two loading cases are given in Tables 15 and 16,
respectively.
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Figure 10. Member stresses of the best solution obtained
by LPOA and IMCSS.

Figure 11. Convergence curves obtained for the 52-bar
planar truss problem.

Based on Tables 15 and 16, LPOA found better
results than the mentioned algorithms did, in these two
case studies. The standard deviation and the average
of the best solution obtained in the last iteration in
the �rst case of study were 3.8167 lb and 373.6517 lb,
respectively. In addition, in the second case, the stan-
dard deviation and average are obtained as 2.8360 lb
and 389.5500 lb, respectively.

Of note, the standard deviation of the results by
the LPOA in 20 independent runs is very small in both
case studies, and the average of the solutions obtained
by LPOA is less than those of the existing results from
literature. The convergence histories of the LPOA are
presented in Figures 13 and 14.

6. Conclusions

A new population-based optimization algorithm was
introduced in this paper, called pride lion optimization
algorithm, to provide a su�ciently good solution to
mathematical and structural problems. The funda-
mental concepts and ideas for the codi�cation of this
method were derived from the behavior of lions in
a pride. The proposed method contained two types
of search agents (lions and lionesses) with a speci�c
set of characteristics. Hunting, excursion of lions
in territories, intra-group interactions, and mating
behaviors were simulated in the proposed algorithm.

Figure 12. Schematic of a 72-bar spatial truss.

Figure 13. Convergence curves for the �rst case of the
72-bar spatial truss problem (Case 1).

In addition, a set of 15 benchmark-unconstrained
functions with speci�c characteristics was tested and
analyzed in comparison to other existing methods.
The mathematical functions were categorized as four
types of functions: unimodal, hybrid, multimodal, and
composite.

In addition, sensitivity analysis of the parameters
was performed to evaluate how these parameters inu-
enced the performance of the algorithm. The Friedman
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Table 15. Optimal design comparison for the spatial 72-bar spatial truss problem (Case 1).

Element group
Optimal cross-sectional areas (in2)

Present
work

GA
[43]

PSO
[45]

PSOPC
[45]

HPSO
[45]

HHS
[47]

DE
[46]

MBA
[9]

1 1.8 1.5 2.6 3 2.1 1.9 2 2.0

2 0.5 0.7 1.5 1.4 0.6 0.5 0.5 0.6

3 0.1 0.1 0.3 0.2 0.1 0.1 0.1 0.4

4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.6

5 1.3 1.3 2.1 2.7 1.4 1.4 1.3 0.5

6 0.5 0.5 1.5 1.9 0.5 0.5 0.5 0.5

7 0.1 0.2 0.6 0.7 0.1 0.1 0.1 0.1

8 0.1 0.1 0.3 0.8 0.1 0.1 0.1 0.1

9 0.5 0.5 2.2 1.4 0.5 0.5 0.5 1.4

10 0.5 0.5 1.9 1.2 0.5 0.5 0.5 0.5

11 0.1 0.1 0.2 0.8 0.1 0.1 0.1 0.1

12 0.1 0.2 0.9 0.1 0.1 0.1 0.1 0.1

13 0.1 0.2 0.4 0.4 0.2 0.2 0.2 1.9

14 0.5 0.5 1.9 1.9 0.5 0.6 0.6 0.5

15 0.4 0.5 0.7 0.9 0.3 0.4 0.4 0.1

16 0.7 0.7 1.6 1.3 0.7 0.6 0.6 0.1

Weight (lb) 371.0037 400.66 1089.88 1069.79 388.94 385.54 385.54 385.54

Table 16. Optimal design comparison for the spatial 72-bar spatial truss problem (Case 2).

Element group
Optimal cross-sectional areas (in2)

Present
work

GA
[43]

PSO
[45]

PSOPC
[45]

HPSO
[45]

DE
[46]

MBA
[9]

1 2.13 0.196 7.22 4.49 4.97 2.13 0.196

2 0.563 0.602 1.8 1.457 1.228 0.442 0.563

3 0.111 0.307 1.13 0.111 0.111 0.111 0.442

4 0.111 0.766 0.2 0.111 0.111 0.111 0.602

5 1.563 0.391 3.09 2.62 2.88 1.457 0.442

6 0.442 0.391 0.79 1.13 1.457 0.563 0.442

7 0.111 0.141 0.56 0.196 0.141 0.111 0.111

8 0.111 0.111 0.79 0.111 0.111 0.111 0.111

9 0.563 1.8 3.09 1.266 1.563 0.442 1.266

10 0.442 0.602 1.23 1.457 1.228 0.563 0.563

11 0.111 0.141 0.11 0.111 0.111 0.111 0.111

12 0.111 0.307 0.56 0.111 0.196 0.111 0.111

13 0.141 1.563 0.99 0.442 0.391 0.196 1.800

14 0.563 0.766 1.62 1.457 1.457 0.563 0.602

15 0.391 0.141 1.56 1.228 0.766 0.307 0.111

16 0.563 0.111 1.27 1.457 1.563 0.563 0.111

Weight(lb) 386.4270 427.203 1209 941.82 933.09 391.329 390.73
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Figure 14. Convergence curves for the �rst case of the
72-bar spatial truss problem (Case 2).

test and 6 di�erent post-hoc tests (Holm, Rom, Hom-
mel, Finner, Holland and Li) were carried out to detect
signi�cant di�erences in the whole multiple comparison
and pairwise comparisons consequently. According
to the optimized solutions obtained, it appears that
the performance of the proposed method is superior
to those of the considered optimization algorithms in
unconstrained problems.

Furthermore, two competitive design problems,
consisting of the 52-bar planar truss, 72-bar spatial
truss, and di�erent constraint conditions (i.e., axial and
shear stress limitations, deection constraints) were
investigated in order to show the performance of the
LPOA algorithm. The competitive studies con�rm the
robustness of the proposed method for solving design
problems.
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