The variable step-size wavelet transform-domain LMS adaptive filter algorithm

Document Type : Article


1 Faculty of Electrical Engineering, Shahid Rajaee Teacher Training University, P.O.Box: 16785-163, Tehran, Iran

2 Faculty of Science, Shahid Rajaee Teacher Training University, P.O.Box: 16785-163, Tehran, Iran


In this paper, the wavelet transform domain least mean squares (WTDLMS) adaptive algorithm with variable
step-size (VSS) is established. The step-size changes according to the largest decrease in mean square deviation. To keep the computational complexity low, the Haar wavelet transform (HWT) is utilized as a transform. In addition, the mean square performance analysis of the VSS-WTDLMS is studied in the stationary and nonstationary environments and the theoretical relations for transient and steady-state performances are established. The simulation results show that the proposed VSS-WTDLMS has faster convergence rate and lower misadjustment than conventional WTDLMS. The theoretical relations are also verified by presenting various experimental results.


Main Subjects

1. Widrow, B. and Stearns D., Adaptive Signal Processing, Englewood Cli_s, NJ Prentice Hall, Inc (1985). 2. Haykin, S.S., Adaptive Filter Theory, Pearson Education India, 5th Edn. (2013). 3. Sayed, A.H., Adaptive Filters, John Wiley & Sons, Inc. (2008). 4. Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, John Wiley & Sons, Ltd (2013). 5. Narayan, S.S., Peterson, A.M., and Narashima, M.J. Transform domain LMS algorithm" IEEE Trans. Acoust., Speech, Signal Processing, pp. 609{615 (1983). 6. Kim, D.I. and Wilde, P.D. Performance analysis of the DCT-LMS adaptive _ltering algorithm", Signal Processing, 80, pp. 1629{1645 (2000). 7. Zhao, S., Man, Z., Khoo, S., and Wu, H. Stability and convergence analysis of transform-domain LMS adaptive _lters with second-order autoregressive process" IEEE Trans. Signal Processing, 57, pp. 119{130 (2009). 8. Attallah, S. The wavelet transform-domain LMS algorithm: a more practical approach," IEEE Trans. Circuits, Syst. II: Analog and Digital Signal Processing, 47(3), pp. 209{213 (2000). 9. Attallah, S. The wavelet transform-domain LMS adaptive _lter with partial subband-coe_cient updating", IEEE Trans. Circuits Syst. II Express Briefs, 53(1), pp. 8{12 (2006). 10. Bilcu, R.C., Kuosmanen, P., and Egiazarian, K. A transform domain LMS adaptive _lter with variable step-size", IEEE Signal Process. Lett., 9(2), pp. 51{53 (2002). 11. Mayyas, K. A transform domain LMS algorithm with an adaptive step size equation', Proceedings of the Fourth IEEE International Symposium on Signal Processing and Information Technology, pp. 229{232 (2004). 12. Huang, F., Zhang, J., and Zhang, S. Combined-stepsize a_ne projection sign algorithm for robust adaptive _ltering in impulsive interference environments" IEEE Trans. Circuits, Syst. II: Express Briefs, 63(5), pp. 493{497 (2016). 13. Zhang, S., Zheng, W.X., and Zhang, J. A new combined-step-size normalized least mean square algorithm for cyclostationary inputs", Signal Processing, 141(12), pp. 261{272 (2017). 14. Huang, F., Zhang, J., and Pang, Y. A novel combination scheme of proportionate _lter", Signal Processing, 143(2), pp. 222{231 (2018). 15. Shams Esfand Abadi, M., Mehrdad, V., Gholipour, A., and Noroozi, M. A family of variable step-size a_ne projection adaptive _ltering algorithms", International Journal of Computer and Electrical Engineering, 2(3), pp. 447{459 (2010). M. Shams Esfand Abadi et al./Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 1398{1412 1411 16. Shin, H.C., Sayed, A.H., and Song, W.J. Variable step-size NLMS and a_ne projection algorithms", IEEE Signal Processing Letters, 11, pp. 132{135 (2004). 17. Zhao, S., Jones, D.L., Khoo, S., and Man, Z. New variable step-sizes minimizing mean-square deviation for the LMS-type algorithms", Circuits, Systems, and Signal Processing, 33, pp. 2251{2265 (2014). 18. Shams Esfand Abadi, M., Far, A.M., and Moussavi, S.Z. Variable step-size block normalized least mean square adaptive _lter: A uni_ed framework", International Journal of Science and Technology, Scientia Iranica, 15, pp. 195{202 (2008). 19. Shams Esfand Abadi, M., Mehrdad, V., and Gholipour, A. Family of variable step-size a_ne projection adaptive _ltering algorithms with selective regressors and selective partial update", International Journal of Science and Technology, Scientia Iranica, 17, pp. 81{98 (2010). 20. Shams Esfand Abadi, M. and Sha_ee, M.S. The new normalized subband adaptive _lter algorithm with variable step-size" Automatika, Journal for Control, Measurement, Electronics, Computing and Communications, 55(2), pp. 188{198 (2014). 21. Lee, H.S., Kim, S.E., Lee, J.W., and Song, W.J. A variable step-size di_usion LMS algorithm for distributed estimation", IEEE Trans. Signal Processing, 63(7), pp. 1808{1820 (2015). 22. Huang, H.C. and Lee, J. A new variable step-size NLMS algorithm and its performance analysis", IEEE Trans. Signal Processing, 60(4), pp. 2055{2060 (2012). 23. Kwong, R.H. and Johnston, E.W. A variable step size LMS algorithm", IEEE Trans. Signal Processing, 40(7), pp. 1633{1642 (1992). 24. Koike, S. A class of adaptive step-size control algorithms for adaptive _lters", IEEE Trans. Signal Processing, 50(6), pp. 1315{1326 (2002). 25. Mayyas, K. and Momani, F. An LMS adaptive algorithm with a new step-size control equation", Journal of the Franklin Institute, 348(4), pp. 589{605 (2011). 26. Shin, H.C. and Sayed, A.H. Mean-square performance of a family of a_ne projection algorithms", IEEE Trans. Signal Processing, 52(1), pp. 90{102 (2004). 27. Haykin, S., Adaptive Filter Theory, NJ: Prentice-Hall, 4th edition (2002). 28. Moon, T.K. and Sterling, W.C., Mathematical Methods and Algorithms for Signal Processing, Upper Saddle River: Prentice Hall (2000). 29. Sayed, A.H., Fundamentals of Adaptive Filtering, Wiley (2003).