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Abstract. In this paper, the Wavelet Transform-Domain Least-Mean-Squares (WT-
DLMSs) adaptive algorithm with Variable Step-Size (VSS) is established. The step-size
changes according to the largest decrease of mean square deviation. To keep computational
complexity low, the Haar Wavelet Transform (HWT) is utilized as a transform. In
addition, the mean square performance analysis of the VSS-WTDLMS is studied in the
stationary and nonstationary environments, and the theoretical relations for transient
and steady-state performances are established. The simulation results show that the
proposed VSS-WTDLMS has a faster convergence rate and lower maladjustment, compared
to conventional WTDLMS. The theoretical relations are veri�ed by presenting various
experimental results.
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1. Introduction

Adaptive �lters are utilized in many applications such
as system identi�cation, channel equalization, and
Acoustic Echo Cancellation (AEC) [1{3]. The Least
Mean Square (LMS) and Normalized LMS (NLMS)
are widely used as the adaptive �lter algorithms due
to their simplicity and robustness. However, the
convergence speed of these algorithms is slow for
highly colored input signals. To solve this problem,
various adaptive algorithms, such as transform domain
adaptive �lters, have been proposed [4].

Transform domain adaptive �lters exploit de-
correlation properties of some well-known signal trans-
forms, such as the discrete Fourier transform (DFT)
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and the Discrete Cosine Transform (DCT), in order
to pre-whiten the input data and speed up �lter
convergence [5{7]. In the Wavelet Transform Domain
Least Mean Square (WTDLMS) adaptive �ltering,
the projection of the input signal into the orthogonal
subspaces is used as inputs to a linear combiner.
Weights of the linear combiner can, hence, be updated
by the LMS algorithm while normalizing the power
at each resolution level to achieve faster and uniform
convergence of all weights to the optimum [8,9].

In these algorithms, the �xed step-size can change
the convergence rate and the steady-state Mean Square
Error (MSE). By selecting the step-size during the
adaptation optimally, fast convergence rate and low
steady-state MSE are obtained at the same time. In
the case of Variable Step-Size (VSS) methods, various
approaches have been proposed in the literature [10{
15]. One of the most important strategies in this issue
was presented in [16]. This approach was successfully
extended to di�erent adaptive �lter algorithms [17{20].

In [20], the Variable Step-Size Normalized Sub-
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band Adaptive Filter (VSS-NSAF) algorithm was in-
troduced. The VSS-NSAF had a faster convergence
speed than NSAF. However, the computational com-
plexity of VSS-NSAF was signi�cantly higher than
that of NSAF. On the other hand, the theoretical
performance analysis of VSS-NSAF was not studied
in [20]. It is implied that any theoretical relations
are not presented for VSS-NSAF in the stationary and
nonstationary environments. Therefore, characteristics
of fast convergence speed, low steady-state error, and
low computational complexity at the same time are
highly desirable in adaptive �lter algorithms. Fur-
thermore, the theoretical performance analysis of the
derived algorithms is very important.

This paper introduces the VSS-WTDLMS adap-
tive algorithm. In the proposed VSS-WTDLMS, the
step-size changes according to the largest decrease of
Mean Square Deviation (MSD). In comparison with
conventional WTDLMS, the VSS-WTDLMS has a
faster convergence speed and lower steady-state MSE.
To keep the computational complexity low, the Haar
Wavelet Transform (HWT) is utilized as a transform.
Due to the structure of HWT (+1 and �1), the number
of multiplications in the proposed VSS-WTDlMS is sig-
ni�cantly reduced. For performance evaluation of any
proposed adaptive algorithm, a theoretical analysis is
essential. Therefore, in the following, the mean square
performance analysis of VSS-WTDLMS is presented
in the stationary and nonstationary environments, and
the theoretical relations for transient and steady-state
MSEs are established.

What we propose in this paper can be summarized
as follows:

� The VSS-WTDLMS adaptive algorithm is estab-
lished. The convergence rate of VSS-WTDLMS
is faster than that of conventional WTDLMS. In
addition, the steady-state error of VSS-WTDLMS
is lower than that of WTDLMS. Furthermore, using
the HWT keeps the computational complexity low;

� The mean-square performance analysis of VSS-
WTDLMS is studied in the stationary environment,
and the theoretical expressions for steady-state and
transient performances are introduced;

� The tracking performance analysis of VSS-
WTDLMS is studied in the nonstationary
environment. In the present study, the unknown
system changes according to the random walk
model. The transient and steady-state behaviors
of VSS-WTDLMS are predicted, and closed-form
relations are derived;

� The performance of the proposed algorithm is
demonstrated through comprehensive experiments
in system identi�cation and AEC applications. The

theoretical results are also justi�ed by several simu-
lations.

The current paper is organized as follows. In
Section 2, the WTDLMS is briey reviewed. Section 3
presents the proposed VSS-WTDLMS adaptive algo-
rithm. Section 4 involves the performance analysis
of the VSS-WTDLMS. Section 5 presents the per-
formance analysis in the nonstationary environment.
Section 6 presents the computational complexity of
the proposed algorithm. Finally, before concluding
the paper, the usefulness of this algorithm and the
validity of the theoretical relations are demonstrated
by presenting several experimental results.

Throughout the paper, (:)T represents transpose,
jj:jj2 takes the squared Euclidean norm, jjtjj2� shows
the �-weighted Euclidean norm of a column vector t
de�ned as tT�t, diagf: : :g stands for a diagonal matrix
with entries f: : :g, vec(T) creates an M2 � 1 column
vector t through stacking the columns of M�M matrix
T, and vec(t) creates an M�M matrix T from M2�1
column vector t.

2. The WTDLMS adaptive algorithm

A linear data model for d(n) is considered as follows:

d(n) = xT (n)wt + v(n); (1)

where wt is the unknown M -dimensional vector that
we expect to estimate, v(n) is the measurement noise
with variance �2

v , and x(n) = [x(n); x(n�1); : : : ; x(n�
M + 1)]T denotes an M -dimensional input (regressor)
vector. It is assumed that v(n) is zero mean, white,
Gaussian, and independent of x(n). Figure 1 shows
the structure of the WTDLMS algorithm [8]. In this
�gure, M�M matrix T is an orthogonal matrix that is
derived from a uniform N -band �lter bank with �lters
denoted by h0; h1; : : : ; hN�1 following the procedure
given in [8]. In the matrix form, the orthogonal Wavalet
Transform (WT) can be expressed as z(n) = Tx(n).
This vector can be represented as follows: z(n) =
[zTh0

(n); zTh1
(n); : : : ; zThN�1

(n)]T where zhi(n)'s are the
output vectors of the N -band �lter bank. By splitting
the WT domain adaptive �lter coe�cients g(n) into N
sub�lters at time n, each with M

N coe�cients, g(n) =
[gTh0

(n);gTh1
(n); : : : ;gThN�1

(n)]T , the output signal can
be stated as follows:

y(n) =
N�1X
i=0

gThi(n)zhi(n); (2)

where the error signal is obtained by e(n) = d(n)�y(n).
The update equation to each sub�lter in WTDLMS is
given by:

ghi(n+ 1) = ghi(n) + �
zhi(n)
�2
hi(n)

e(n); (3)
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Figure 1. Structure of the Wavelet Transform-Domain Least-Mean-Square (WTDLMS) algorithm.

where � is the step-size, and �2
hi(n) is computed

iteratively by:

�2
hi(n) = ��2

hi(n� 1) + (1� �)jjzhi(n)jj2; (4)

with a smoothing factor � (0� � < 1).

3. The VSS-WTDLMS

In this section, the VSS-WTDLMS adaptive algorithm
is established according to the largest decrease of MSD.
In addition, the theoretical performance analysis is
presented in the next section. To do so, the following
assumptions are made throughout the paper [8,20{26]:

- Assumption 1. z(n) is independent and an identi-
cally distributed sequence vector;

- Assumption 2. z(n) is independent of e(n);
- Assumption 3. �(n) is independent of z(n), v(n),

and e(n);
- Assumption 4. In the steady state, error signal
e(n) is approximately equal to noise v(n).

By de�ning the weight error vector as ~ghi(n) =
gohi � ghi(n), where gohi is the true unknown sub�lter
coe�cient, the weight error vector update equation
for WTDLMS for each sub�lter can be represented as
follows:

~ghi(n+ 1) = ~ghi(n)� �hi(n)
zhi(n)
�2
hi(n)

e(n): (5)

In Eq. (5), �hi(n) is a VSS in sub�lter. By applying
the squared Euclidean norm and, then, taking the
expectation of both sides of Eq. (5), the following
yielded:

E[jj~ghi(n+ 1)jj2] = E
�jj~ghi(n)jj2���; (6)

where:

� = 2�hi(n)E

"
~gThi(n)zhi(n)e(n)

�2
hi(n)

#
��2

hi(n)E[
e2(n)jjzhi(n)jj2

�4
hi(n)

]: (7)
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Maximizing � with respect to �hi(n) leads to the
optimum step-size as follows:

�ohi(n) =
E
�

~gThi (n)zhi (n)e(n)
�2
hi

(n)

�
E
�
e2(n)jjzhi (n)jj2

�4
hi

(n)

� : (8)

Since e(n) = ea(n) + v(n) and using ea(n) �
~gThi(n)zhi(n), Eq. (8) can be written as follows [8]:

�ohi(n) �
E[ e

2
a(n)

�2
hi

(n) ]

E
�
e2a(n)jjzhi (n)jj2

�4
hi

(n)

�
+ �2

vE
�
jjzhi (n)jj2
�4
hi

(n)

� : (9)

De�ning qhi(n) = zhi (n)ea(n)
�2
hi

(n) , we obtain that

jjqhi(n)jj2 = e2a(n)jjzhi (n)jj2
�4
hi

(n) . Then, the optimum step-
size can be expressed as follows:

�ohi(n) � E[jjqhi(n)jj2]
E[jjqhi(n)jj2] + �2

v
�2
hi

(n)

: (10)

Taking the expectation of qhi(n) yields:

E[qhi(n)] = E

"
zhi(n)e(n)
�2
hi(n)

#
: (11)

Now, we propose to estimate E[qhi(n)] by time aver-
aging as follows:

q̂hi(n) = �q̂hi(n� 1) + (1� �)
zhi(n)e(n)
�2
hi(n)

; (12)

where 0 � � < 1. De�ning q̂hi(0) = zhi (0)e(0)
�2
hi

(0) , we
have:

q̂hi(n)=�nq̂hi(0)+(1��)
nX
j=1

"
�n�j zhi(j)e(j)

�2
hi(j)

#
:
(13)

Taking the squared Euclidean norm and, then, the
expectation of both sides of Eq. (13) and using As-
sumptions 1 and 2, we obtain:

E[jjq̂hi(n)jj2] = �2nE[G(0; 0)]

+(1� �)2
nX
j=1

[�2n�2jE[G(j; j)]]; (14)

where G(j; k) =
e(j)zThi (j)zhi (k)e(k)

�2
hi

(j)�2
hi

(k) , and:

E[G(j; k)] =

(
0 k 6= j
E[e2(j)]
�2
hi

(j) k = j (15)

Eq. (14) can be recursively computed as follows:

E[jjq̂hi(n)jj2] = �2E[jjq̂hi(n� 1)jj2]

+(1� �)2E[G(n; n)]: (16)

Finally, Eq. (16) can be rewritten as follows:

E[jjq̂hi(n)jj2] = �2E[jjq̂hi(n� 1)jj2]

+(1� �)2E[e2(n)]
�2
hi(n)

; (17)

where E[jjq̂hi(0)jj2] = E[e2(0)]
�2
hi

(0) . Therefore, Eq. (10) is
obtained by:

�ohi(n) � E[jjq̂hi(n)jj2]
E[jjq̂hi(n)jj2] + �2

v
�2
hi

(n)

: (18)

By multiplying the numerator and denominator of
Eq. (18) by �2

hi(n), the optimum step-size can be
expressed as follows:

�o(n) � E[jjp̂(n)jj2]
E[jjp̂(n)jj2] + C

; (19)

where C = �2
v and:

E[jjp̂(n)jj2] = �2E[jjp̂(n� 1)jj2] + (1� �)2E[e2(n)]:
(20)

In Eq. (20), E[jjp̂(0)jj2] = E[e2(0)]. Finally, the update
equation for VSS-WTDLMS is established as follows:

ghi(n+ 1) = ghi(n) + �(n)
zhi(n)

�+ �2
hi(n)

e(n); (21)

where � is the regularization parameter and is in-
troduced to avoid being divided by zero. Table 1

Table 1. The VSS-WTDLMS adaptive algorithm.

for n = 0; 1; : : :
x(n) = [x(n); : : : ; x(n�M + 1)]T

z(n) = Tx(n)
g(n) = [gTh0(n);gTh1(n); : : : ;gThN�1(n)]T

z(n) = [zTh0(n); zTh1(n); : : : ; zThN�1(n)]T

e(n) = d(n)�PN�1
i=0 gThi(n)zhi(n)

jjp̂(n)jj2 = �2jjp̂(n� 1)jj2 + (1� �)2e2(n)
�(n) = min[�max; �(n)], �(n) = jjp̂(n)jj2

jjp̂(n)jj2+�2
v

for i = 0; 1; : : : ; N � 1
�2
hi(n) = ��2

hi(n� 1) + (1� �)jjzhi(n)jj2
ghi(n+ 1) = ghi(n) + �(n) zhi (n)

�+�2
hi

(n)e(n)

end
end
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summarizes the procedure of VSS-WTDLMS adaptive
algorithm. The step-size in Eq. (21) is bounded by the
following relation:

�(n) = min[�max; �(n)]: (22)

In Appendix A, the values of �max are presented.
The fully update equation of VSS-WTDLMS can be
represented as follows:

g(n+ 1) = g(n) + �(n)C(n)z(n)e(n); (23)

where:

C(n) =

0BBB@
Ch0(n) 0 : : : 0

0 Ch1(n) : : : 0
...

...
. . .

...
0 : : : 0 ChN�1(n)

1CCCA(24)

and Chi(n) = 1
�+�2

hi
(n)IMN �MN .

4. Performance analysis of VSS-WTDLMS in
stationary environment

The transient behavior of an adaptive �lter algorithm
is determined by the evolution of the expected squared
a priori error at time n, i.e., Efe2

a(n)g, which is:

Efe2
a(n)g = Ef~gT (n)z(n)zT (n)~g(n)g; (25)

where ~g(n) = gt � g(n) is the weight-error vector.
Employing the common independence assumption [27],
we have:

Efe2
a(n)g = Ef~gT (n)RWT~g(n)g = Efjj~g(n)jj2RWT

g;
(26)

where RWT is the autocorrelation matrix and RWT =
Efz(n)zT (n)g. Therefore, to obtain the learning curve,
we need to �nd Efjj~g(n)jj2RWT

g as a function of n.
We can recursively obtain Efjj~g(n)jj2�g, where � is a
positive de�nite symmetric matrix whose dimension is
commensurate with that of ~g(n).

As is known, the relation among output error, a
priori error, and the noise signals is as follows;

e(n) = ea(n) + v(n); (27)

where ea(n) = zT (n)~g(n) is the a priori error signal.
By substituting Eq. (27) into Eq. (23), the weight error
vector update equation can be stated as follows:

~g(n+ 1) = ~g(n)� �(n)C(n)z(n)[zT (n)~g(n) + v(n)]:
(28)

By de�ning D(n) = zT (n)CT (n), the �-weighted
Euclidean norm from both sides of Eq. (28) yields:

jj~g(n+ 1)jj2� = jj~g(n)jj2	(n) + �2(n)v2(n)z�(n)

+fCross terms involving one instance of v(n)g;
(29)

where:

	(n) = �� �(n)�DT (n)zT (n)� �(n)z(n)D(n)�

+�2(n)z(n)z�(n)zT (n); (30)

and z�(n) = D(n)�DT (n). Taking the expectation of
both sides of Eq. (29) and using Assumptions 1, 2, and
3 yield:

Efjj~g(n+ 1)jj2�g = Efjj~g(n)jj2	(n)g
+Ef�2(n)v2(n)z�(n)g; (31)

where:

	(n) = ���Ef�(n)DT (n)zT (n)g
�Ef�(n)z(n)D(n)g�
+Ef�2(n)z(n)z�(n)zT (n)g: (32)

De�ning m(n) = Ef�(n)g and m2(n) = Ef�2(n)g and
using Assumption 3, we obtain:

	(n) = ��m(n)�EfDT (n)zT (n)g
�m(n)Efz(n)D(n)g�
+m2(n)Efz(n)z�(n)zT (n)g: (33)

Considering only the second term of the right-hand side
of Eq. (31), we write:

Ef�2(n)v2(n)z�(n)g = m2(n)�2
vEfz�(n)g: (34)

Therefore, Eq. (31) can be rewritten as follows:

Efjj~g(n+ 1)jj2�g = Efjj~g(n)jj2	(n)g
+m2(n)�2

vEfz�(n)g: (35)

Applying vec(:) operator to both sides of Eq. (33) and
using vec(P�Q) = (QT 
P)vec(�) [28] yield:

'(n) = ��m(n)(Efz(n)D(n)g 
 I)

:��m(n)(I
 Efz(n)D(n)g):�
+m2(n)(Ef(z(n)D(n))
 (z(n)D(n))g):�;

(36)

where '(n) = vec(	(n)) and � = vec(�). By de�ning
M2 �M2 matrix P(n) as:

P(n) = I�m(n)Efz(n)D(n)g 
 I

�m(n)I
 Efz(n)D(n)g
+m2(n)Ef(z(n)D(n))
 (z(n)D(n))g; (37)
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Eq. (37) becomes:

'(n) = P(n):�: (38)

The second term on the right-hand side of Eq. (35) can
be expressed as follows:

Efz�(n)g = Tr(EfDT (n)D(n)g:�): (39)

De�ning  through:

 = vec(EfDT (n)D(n)g); (40)

we have:

Tr(EfDT (n)D(n)g:�) = T�: (41)

According to the above relation, the recursion of
Eq. (35) can be formulated as follows:

Efjj~g(n+ 1)jj2�g = Efjj~g(n)jj2P(n)�g+m2(n)�2
v
T�:
(42)

Focusing again on the learning curve, we substitute
RWT for �, de�ne r = vec(RWT ), and, write:

Efjj~g(n)jj2rg = Efjj~g(0)jj2P(0)P(1)���P(n�1)rg
+�2

v
TAr; (43)

where:

A=m2(0)P(1) � � �P(n� 1)+m2(1)P(2) � � �P(n� 1)

+ � � �+m2(n� 2)P(n� 1) +m2(n� 1)I: (44)

Based on this recursion, the Excess Mean Square Error
(EMSE) can be obtained, when n goes to in�nity. The
EMSE in the steady state is:

EMSE = lim
n!1Efe2

a(n)g: (45)

Based on Eq. (27), the MSE and EMSE are related as
follows:

MSE = EMSE + �2
v : (46)

Therefore, the steady-state EMSE can be stated as
follows:

EMSE = m2(1)�2
v
T (I�P(1))�1r: (47)

In addition, the steady-state Mean Square Deviation
(MSD) is given by:

MSD = m2(1)�2
v
T (I�P(1))�1vec(I): (48)

For the theoretical transient and steady-state perfor-
mances of the step-size, please refer to Appendix B.

5. Performance analysis of VSS-WTDLMS in
the nonstationary environment

In the nonstationary environment, the unknown system
(wt) is assumed time-variant, which changes based on
the following random walk model [26,29]:

wt(n+ 1) = wt(n) + q(n); (49)

where the random sequence of q(n) is a zero mean and
an independent and identically distributed sequence
with autocorrelation matrix Q = Efq(n)qT (n)g and
independent of z(n), v(n), and �(n) [29]. Multiplying
both sides of Eq. (49) by T, we obtain:

gt(n+ 1) = gt(n) + �(n); (50)

where gt(n) = Twt(n) and �(n) = Tq(n). Now,
the weight error vector update equation of (~g(n) =
gt(n)�g(n)) in the nonstationary environment can be
expressed as follows:

~g(n+ 1) = ~g(n) + �(n)

��(n)C(n)z(n)[zT (n)~g(n) + v(n)]: (51)

Taking the �-weighted Euclidean norm and, then,
expectation of both sides of Eq. (51) leads to:

Efjj~g(n+ 1)jj2�g = Efjj~g(n)jj2	(n)g+ Efjj�(n)jj2�g
+m2(n)�2

vEfz�(n)g: (52)

By following the same strategy in Section 4, Eq. (52)
can be expressed as follows:

Efjj~g(n+ 1)jj2�g = Efjj~g(n)jj2P(n)�g+ Efjj�(n)jj2�g
+m2(n)�2

v
T�: (53)

The recently equation is related to ~g(0) as in the
following:

Efjj~g(n)jj2rg = Efjj~g(0)jj2P(0)P(1)���P(n�1)rg
+Tr(Q�Br) + �2

v
TAr; (54)

where Q� = Ef�(n)�T (n)g and:

B = P(1)P(2) : : :P(n� 1) + P(2)P(3) : : :P(n� 1)

+ : : :+ P(n� 2)P(n� 1) + P(n� 1) + I: (55)

The steady-state EMSE and MSD in the nonstationary
environment are obtained by:

EMSE = m2(1)�2
v

T (I�P(1))�1r

+Tr(Q�vec((I�P(1))�1r)); (56)

and:
MSD = m2(1)�2

v
T (I�P(1))�1vec(I)

+Tr(Q�vec((I�P(1))�1vec(I))): (57)
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6. Computational complexity

Table 2 describes the computational complexity of
VSS-WTDLMS algorithms. The number of multiplica-
tions and divisions have been calculated for each term.
In the following, Table 3 compares the computational
complexity of various VSS-TDLMS algorithms. These
algorithms are derived from [6,10,11,17]. In this table,
M is the number of �lter coe�cients, N is the number
of subbands, Mt is the number of past values of the
ith transform coe�cient, and L is the number of
past squared values of the error. In comparison with
WTDLMS, the VSS-WTDLMS needs only three more
multiplications and one division. The VSS-WTDLMS
has also lower computational complexity than other
VSS-TDLMS algorithms. It is interesting to note that
using the HWT leads to the only 3M+3N+3 multipli-
cations, signi�cantly useful in some applications such
as AEC.

7. Simulation results

We demonstrated the performance of the proposed
algorithm by several computer simulations in system
identi�cation and AEC scenarios. For the system iden-
ti�cation, the unknown impulse response is randomly
selected with 16 taps (M = 16), and the input signal
is an AR(1) signal generated by passing a zero-mean
white Gaussian noise through a �rst-order system of
H(z) = 1

1�0:9z�1 . In AEC, the input signal is the
real speech, and the unknown system is the car echo
path with M = 256. An additive white Gaussian
noise, with variance �2

v = 10�3, is added to the system
output, setting the signal-to-noise ratio (SNR) to 30
dB. The HWT is used in all simulations, leading to
the reduction of computational complexity due to the
elements (+1 and -1) in HWT. Parameter C was set to
10�3, and the values of � and � were set to 0.994 and
0.9, respectively. Based on the mean square stability

Table 2. The computational complexity of VSS-WTDLMS algorithm.

Equation In subband Total

� � � �
z(n) = Tx(n) - - M2 -

e(n) = d(n)� gT (n)z(n) - - M -

kp̂(n)k2 = �2kp̂(n� 1)k2 + (1� �)2e2(n) - - 3 -

�(n) = kp̂(n)k2
kp̂(n)k2+�2

�
- - - 1

�2
hi(n) = ��2

hi(n� 1) + (1� �)kzhi(n)k2 M
N + 2 - M + 2N -

ghi(n+ 1) = ghi(n) + �(n) zhi (n)
�+�2

hi
(n)e(n) M

N + 1 1 M +N N

Total Multiplications : M2 + 3M + 3N + 3

Table 3. The computational complexity of various VSS-WTDLMS.

Algorithm Multiplications Divisions

DCT-LMS [6] M2 + (Mt + 4)M + 1 2M

VSS-TDLMS [10] M2 + 5M + L+ 2 M + 1

VSS-TDLMS [11] M2 + 8M + 8 M + 1

VSS-TDLMS [13] M2 + 5M + 8 M + 1

WTDLMS M2 + 3M + 3N N

VSS-WTDLMS M2 + 3M + 3N + 3 N + 1

VSS-WTDLMS (HWT) 3M + 3N + 3 N + 1
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Table 4. Stability bounds of the WTDLMS adaptive algorithm for di�erent values of N .

Algorithm 1
�max(M�1N)

1
max(�(H)2<+) �max

WTDLMS (N = 2) 0:8233 2:4208 0:8233

WTDLMS (N = 4) 0:3925 1:0996 0:3925

WTDLMS (N = 8) 0:1977 0:5531 0:1977

Figure 2. The MSD learning curves of WTDLMS and
VSS-WTDLMS algorithms with N = 2 (input signal:
AR(1)).

Figure 3. The MSD learning curves of WTDLMS and
VSS-WTDLMS algorithms with N = 4 (input signal:
AR(1)).

analysis in Appendix A, the values of �max are selected
in VSS-WTDLMS. Table 4 shows �max for N = 2,
4, and 8. These values have been obtained from
Eq. (A.3).

Figures 2{4 show the MSD learning curves of the
proposed VSS-WTDLMS and conventional WTDLMS
algorithm for di�erent values of N . In WTDLMS,
di�erent values of the step-size are selected. Compared
to the conventional WTDLMS algorithm, it is observed
that VSS-WTDLMS has a faster convergence speed

Figure 4. The MSD learning curves of WTDLMS and
VSS-WTDLMS algorithms with N = 8 (input signal:
AR(1)).

and lower steady-state error for all values of N . The
theoretical learning curves for VSS-WTDLMS are also
presented in these �gures. The theoretical learning
curves are obtained from Eq. (43). Good agreement
between simulated and theoretical learning curves can
be seen.

Figure 5 presents the theoretical and simulated
values of the step-size during adaptation. The theo-
retical transient values for the step-size are obtained
from Eqs. (19) and (B.1). In addition, the theoretical
steady-state step-size is calculated through Eq. (B.4).
To clear the steady-state values, we have shown the
last values from iteration 1500 to 5000 in Figure 5.
Again, good agreement can be seen for di�erent values
of N . A comparison between VSS-WTDLMS and
recently and famous VSS-TDLMS algorithms is made,
as shown in Figure 6 [6,10,11,17]. The parameters in
these algorithms are set according to Table 5. This
�gure indicates that the VSS-WTDLMS has better
performance than other algorithms for all values of
N . In addition, the computational complexity of
the proposed algorithm is lower than that of other
TDLMS algorithms due to HWT. In Figure 7, we have
justi�ed the performance of VSS-WTDLMS for various
WTs. The Haar, daubechies 2 (db2), symlets 2 (sym2)
WTs were applied to the transformation matrix. The
simulation results show that the performances of VSS-
WTDLMS with di�erent WTs are approximately close
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Table 5. The parameters in VSS-TDLMS and VSS-WTDLMS algorithms.

DCT-LMS [6] VSS-TDLMS [10]
� = 0:9985;  = 8� 10�3, � = 0:99; � = 0:9;  = 10�3,
Mt = 10; � = 2:5� 10�2. L = 10; � = 2:5;�10�2;

�max = 5� 10�2; �min = 4:7� 10�3

VSS-TDLMS [11] VSS-TDLMS [13]
� = 0:98;  = 0:98, � = 0:995; � = 0:9;  = 0:9; �max = 0:5,
� = 2:5� 10�2 C = M � �2

� ; � = 2:5� 10�2

VSS-WTDLMS
� = 0:994; � = 0:9; � = 2:5;�10�2

C = �2
� ; �max = 0:7; 0:3; 0:15; (N = 2; 4; 8):

Figure 5. The simulated and theoretical transient and steady-state values of the step-size for di�erent values of N .

Figure 6. The MSD learning curves of various
VSS-TDLMS and VSS-WTDLMS algorithms (input
signal: AR(1)).

to each other. In Figure 8, the performance of VSS-
WTDLMS is studied for di�erent values of C. Param-
eter N is set to 2, and the values of C change from
0:01 to 0:0005. The results show that, for large values

Figure 7. The MSD learning curves of VSS-TDLMS
algorithm with di�erent WTs (input signal: AR(1)).

of C, the performance is deviated. The learning curves
are compared with other algorithms. As observed,
the VSS-WTDLMS has performance better than other
VSS-TDLMS algorithms. Figure 9 presents the simu-
lated and theoretical learning curves for di�erent values
of SNR. It is observed that, for all values of SNR, the
proposed VSS-WTDLMS works well.
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Figure 8. The MSD learning curves of various
VSS-TDLMS and VSS-WTDLMS algorithms for di�erent
values of C (input signal: AR(1)).

Figure 9. The MSD learning curves of VSS-WTDLMS
algorithm for di�erent values of SNR (input signal:
AR(1)).

In Figure 10, the tracking performance of VSS-
WTDLMS is studied. During the adaptation, the
unknown system changes in the middle of the itera-
tion. The results show that the VSS-WTDLMS has
a tracking ability better than other algorithms. It is
clear that the Recursive Least Squares (RLS) algorithm
has a faster convergence speed than VSS-WTDLMS.
However, when the system changes, the performance
of RLS is deviated. The performance of WTDLMS
in the nonstationary environment is demonstrated in
Figures 11 and 12. The unknown system changes
according to the random walk model. We assume
an independent and identically distributed sequence
for q(n) with autocorrelation matrix Q = �2

qI [26].
To obtain various degrees of nonstationary, di�erent

Figure 10. The MSD learning curves of various
VSS-TDLMS and VSS-WTDLMS with N = 8 for tracking
performance analysis (input signal: AR(1)).

Figure 11. The simulated and theoretical MSD learning
curves of VSS-TDLMS with N = 2 for di�erent values of
�2
q .

Figure 12. The simulated and theoretical MSD values
versus di�erent values of �2

q .
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Figure 13. The impulse response of the car echo path and real speech input signal.

values for �2
q have been chosen. Figure 11 presents

the simulated and theoretical MSD learning curves of
VSS-WTDLMS with N = 2. The theoretical learning
curves are obtained from Eq. (54). Accordingly, when
the variance of q(n) increases, the performance of VSS-
WTDLMS is deviated. In addition, the simulated and
theoretical learning curves have good agreement. It
means that the derived theoretical relation in Eq. (54)
has good ability to predict the performance of the VSS-
WTDlMS algorithm. In Figure 12, the simulated and
theoretical MSD and MSE versus di�erent values of
�2
q are presented. As observed, the theoretical and

simulated values have good agreement.
Figure 13 shows the impulse response of the

car echo path and real speech input signal in AEC
setup. The variance of the additive noise is set to
10�9. The MSD learning curves of various VSS-
TDLMS and proposed VSS-WTDLMS are presented
in Figure 14. This �gure indicates that some VSS-
TDLMS algorithms for the real speech input signal
diverge. For all values of N , the VSS-WTDLMS
shows better performance than other VSS-TDLMS
algorithms. Figure 15 presents the error signals in VSS-
WTDLMS. The variation of the step-size for di�erent
values of N during the adaptation has been presented
in Figure 16. In Figures 17 and 18, the variances
of the additive noise increase to 10�6 and 10�3. In
comparison with other VSS-TDLMS algorithms, the
VSS-WTDLMS has a faster convergence speed and
lower steady-state error.

Finally, Figure 19 shows the number of �lter
coe�cients versus the �lter length for VSS-TDLMS,
WTDLMS, and VSS-WTDLMS algorithms. This �g-

Figure 14. The MSD learning curves of various
VSS-TDLMS and VSS-WTDLMS algorithms, �v = 10�9

(Input signal: real speech).

ure shows that the computational complexity of VSS-
WTDLMS is lower than that of other algorithms. As
is observed, this di�erence is signi�cantly large for
HWT.

8. Conclusion

In this paper, the Wavelet Transform Domain Least
Mean Square (WTDLMS) combined with Variable
Step-Size (VSS) was established. The step-size changed
according to the largest decrease of mean square
deviation. In addition, the mean square performance
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Figure 15. Error signals in VSS-WTDLMS with N = 2, 4, and 8.

Figure 16. Variation of the step-size during the adaptation for VSS-WTDLMS in AEC.

Figure 17. The MSD learning curves of various
VSS-TDLMS and VSS-WTDLMS algorithms, �2

v = 10�6

(input signal: real speech).

Figure 18. The MSD learning curves of various
VSS-TDLMS and VSS-WTDLMS algorithms, �2

v = 10�3

(input signal: real speech).
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Figure 19. The number of �lter coe�cients versus the �lter length (M) in various VSS-TDLMS, WTDLMS, and
VSS-WTDLMS algorithms.

of the VSS-WTDLMS was studied, and theoretical
relations for transient and steady-state performances
of this algorithm were established in stationary and
nonstationary environments. The good performance of
the VSS-WTDLMS and the validity of the theoretical
relations were con�rmed by several simulation results.
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Appendix A

Mean square stability analysis of WTDLMS
To study the theoretical performance of WTDLMS,
the �xed step-size is replaced in the VSS-WTDLMS

relations. Following the analysis, we obtain:

Efjj~g(n+ 1)jj2�g = Efjj~g(n)jj2P�g+ �2�2
v'

T�; (A.1)

where:

P = I� �Efz(n)D(n)g 
 I� �I
 Efz(n)D(n)g
+�2Ef(z(n)D(n))
 (z(n)D(n))g: (A.2)

Eq. (A.1) is stable if matrix P is stable [26]. Based
on Eq. (A.2), it is known that P = I � �M + �2N,
where M = Efz(n)D(n)g
 I + I
Efz(n)D(n)g, and
N = Ef(z(n)D(n))
(z(n)D(n))g. The condition on �
to guarantee the convergence in the mean-square sense
of the WTDLMS algorithms is as follows:

0<�<min
�

1
�max(M�1N)

;
1

max(�(H) 2 <+)

�
;
(A.3)

where H =
� 1

2M � 1
2N

I 0

�
.

Appendix B

The theoretical transient and steady-state
step-size
The transient study of step-size is obtained from
Eq. (19), where:

E[jjp̂(n)jj2] = �2E[jjp̂(n� 1)jj2]

+(1� �)2(E[jj~g(n)jj2RWT
] + �2

v):
(B.1)

Under Assumption 4, when n goes to in�nity, we have:

E[jjp̂(1)jj2] = �2E[jjp̂(1)jj2] + (1� �)2�2
v : (B.2)

Therefore:

E[jjp̂(1)jj2] =
1� �
1 + �

�2
v : (B.3)

According to Eq. (19), the steady-state value for the
step-size is given by:

m(1) =
E[jjp̂(1)jj2]

E[jjp̂(1)jj2] + �2
v

=
1� �

2
: (B.4)
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