Massive Parallel Digital Micro fluidic Biochip Architecture for Automating Large-Scale Biochemistry Assays

Document Type: Article

Authors

1 Department of Computer Science and Engineering, Shahid Beheshti University, G.C., Tehran 1982963113, Iran

2 Department of Computer Engineering, Mahdishahr Branch, Islamic Azad University, Mahdishahr, Iran

Abstract

Micro/Nano fluidic biochips are used to automate the clinical diagnosis, DNA sequencing, automated drug discovery and real time bio-molecular recognition. One of attractive usages of biochips is Lab-on-chip (LOC). Lab-on-Chip technology is a promising replacement for biomedical and chemical apparatus. Two main types of micro fluidic based biochips are used: continuous-flow based and digital micro fluidic biochips (DMFB). In DMFBs, liquids, in the form of droplets, are controlled independently and concurrently over a two dimensional array of cells (or electrodes).Digital micro fluidic biochips provide high ability to con gure and fault tolerance.
In this paper, a new architecture for DMFB with purpose of balancing among the parameters of flexibility, efficiency, cost, and completion time of biological experiments, is presented. In the new architecture, a FPGA-based structure is used, which increase flexibility and paralellizing assay operations. Experiments show
that, the execution time of scheduling, routing, and simulation are improved in comparison with FPPC architecture about 2.54%, 18.76% and 12.52%, respectively in cost of 21% overhead in the number of controlling pins.

Keywords

Main Subjects



Volume 25, Issue 6
Transactions on Computer Science & Engineering and Electrical Engineering (D)
November and December 2018
Pages 3461-3474