1. Bhimaraddi, A. Free vibration analysis of doubly curved shallow shells on rectangular planform using three-dimensional elasticity theory", Int. J. Solids Struct., 27(7), pp. 897{913 (1991). 2. Singh, V.K. and Panda, S.K. Nonlinear free vibration analysis of single/doubly curved composite shallow shell panels", Thin Walled Struct., 85, pp. 341{349 (2014). 3. Qatu, M.S. and Leissa, A.W. E_ects of edge constraint upon shallow shell frequencies", Thin Walled Struct., 14(5), pp. 347{379 (1992). 4. Abe, A., Kobayashi, Y., and Yamada, G. Non-linear vibration characteristics of clamped laminated shallow shells", J. Sound Vib., 234(3), pp. 405{426 (2000). 5. Amabili, M. Non-linear vibrations of doubly curved shallow shells", Int. J. Non Linear Mech., 40, pp. 683{ 710 (2005). 6. Shoshtari, A. and Razavi, S. Large-amplitude free vibration of magneto-electro-static curved panels", Scientia Iranica, 23(6), pp. 2606{2615 (2016). 7. Vafai, A., Mo_d, M., and Estekanchi, H.E. Experimental study of prefabricated funicular shell units", Eng. Struct., 19(9), pp. 748{759 (1997). 8. Weber, J.W., Wu, K.C., and Vafai, A. Ultimate loads for shallow funicular concrete shells", Northwest Sci., 58(3), pp. 187{194 (1984). 9. Vafai, A. and Farshad, M. Theoretical and experimental study of prefabricated funicular shell units", Build. Environ., 14, pp. 209{216 (1979). 10. Elangovan, S. Analysis of funicular shells by the isoparametric _nite element", Comput. Struct., 34(2), pp. 303{311 (1990). 11. Rajasekaran, S. and Sujatha, P. Con_guration of deep funicular shells by boundary integral element method", Comput. Struct., 44(1/2), pp. 213{221 (1992). 12. Lakshmikandhan, K.N., Sivakumar, P., Jose, L.T., Sivasubramanian, K., Balasubramanian, S.R., and Saibabu, S. Parametric study on development, testing H. Sabermahany et al./Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 1714{1727 1725 and evaluation of concrete funicular shells", International Journal of Engineering and Innovative Technology (IJEIT), 3(12), pp. 183{191 (2014). 13. Sivakumar, P., Manjunatha, K., and Harish, B.A. Experimental and FE analysis of funicular shells", International Journal of Engineering and Innovative Technology (IJEIT), 4(9), pp. 178{186 (2015). 14. Siddesh, T.M., Harish, B.A., and Manjunatha, K. Finite element analysis of funicular shells with rectangular plan ratio 1:0.7 under concentrated load using SAP2000", International Research Journal of Engineering and Technology (IRJET), 3(9), pp. 873{878 (2016). 15. Sachithanantham, P. Study of shallow funicular concrete shells of plan to rise ratio 1:2", International Journal of Biotech Trends and Technology (IJBTT), 2(3), pp. 53{64 (2012). 16. Tarunkumar, T. and Sachithanantham, P. Study on shallow funicular concrete shells over rectangular ground plan ratio 1:0.8", International Journal of Computer Trends and Technology (IJCTT), 3(6), pp. 29{49 (2012). 17. Sachithanantham, P. Study of geo-grid reinforced shallow funicular concrete shells subjected to ultimate loads", International Journal of Biotech Trends and Technology (IJBTT), 2(2), pp. 34{46 (2012). 18. Sachithanantham, P., Sankaran, S., and Elavenil, S. Study on shallow funicular concrete shells over rectangular ground plan ratio 1:0.6", International Journal of Computer Trends and Technology (IJCTT), 3(6), pp. 19{28 (2012). 19. Sachithanantham, P., Sankaran, S., and Elavenil, S. Study on shallow funicular concrete shells over rectangular ground plan ratio 1:0.9", International Journal of Emerging Technology and Advanced Engineering (IJETAE), 4(4), pp. 102{107 (2014). 20. Ramaswamy, G.S., Design and Construction of Concrete Shell Roofs, McGraw-Hill, New York, USA (1968). 21. Ventsel, E. and Krauthammer, T., Thin Plates and Shells, Theory, Analysis, and Applications, Marcel Dekker, New York, USA (2001). 22. Amabili, M. E_ect of boundary conditions on nonlinear vibrations of circular cylindrical panels", J. Appl. Mech., 74, pp. 645{657 (2007).