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Abstract. Funicular shells are thin, doubly curved shallow shells that are in compression
under dead weight due to their shape. In this study, an analytical approach is employed
to consider the forced linear vibration of concrete funicular shells with a rectangular base
under impulse loads based on shallow shells theory. Two boundary conditions, simply
supported and clamped, are considered. The solution is obtained by Lagrangian approach.
The accuracy of the results was considered by comparing the results with those of �nite
element method. The results indicated that tensile stresses in addition to compressive
stresses formed in funicular shells under impulse loads.
© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Reinforced concrete shells are frequently used as roof-
ing elements. Shell structures carry load through their
shape rather than material strength. Funicular shells
represent a type of shells with a particular shape such
that, in their membrane state, they carry a speci�c
load by pure compression (this load is the shell's dead
weight). Concrete is an appropriate material for the
construction of funicular shells for two reasons. First,
funicular shells are primarily subjected to compres-
sion, and concrete compressive strength is favorable.
Second, concrete has the 
exibility to form into any
shape, which is necessary for obtaining funicular shell
geometry. The performance of funicular shells sub-
jected to dead weight is compressive; nevertheless,
other types of stresses may be generated under other
loads. Therefore, investigating the performance of
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funicular shells subjected to dynamic loads appears
essential. Many researchers have proposed the analysis
of funicular shells under various static loads. On the
other hand, for dynamic loads, no research is available.
However, funicular shells with a rectangular plan are
mostly shallow, and the analysis of doubly curved
shallow shells under dynamic loads has been presented.
For instance, Bhimaraddi [1] investigated free vibration
of homogenous and laminated doubly curved shallow
shells over a rectangular plan form. By applying three-
dimensional elasticity equations alongside the assump-
tion where the ratio of shell thickness to its middle
surface radius is negligible, as compared to unity, the
governing equilibrium equations have been reduced to
di�erential equations with constant coe�cients. In
fact, the complex mathematical manipulations can
be avoided by reducing the governing equations to
those with constant coe�cients and retaining 3-D
characteristics of the problem. This goes against the
reduction of the governing equations to 2-D cases.
The nonlinear free vibration behavior of single/doubly
curved composite shallow shell panels was studied by
Singh and Panda [2]. A general mathematical model,
including the nonlinear higher order terms, was devel-
oped. The governing equations were determined by
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Hamilton's principle and analyzed through nonlinear
Finite Element Method (FEM) steps. The e�ect of
changing constraint conditions upon the frequencies
of shallow shells with rectangular boundaries was
carried out by Qatu and Leissa [3]. Three edges
were completely free and the attention was given to
a single edge with clamped, simply supported, and free
edge conditions. The Ritz method was employed in
order to obtain accurate results. It was found that
releasing the constraint of the u-displacement compo-
nent (displacement component in x direction) had the
largest e�ect on the fundamental frequencies. Abe
et al. [4] presented nonlinear vibration characteristics
of clamped laminated shallow shells. Moreover, both
�rst-order shear deformation theory and classical shell
theory were used. Nonlinear equations of motion
were obtained by Hamilton's principle and analyzed
by Galerkin's procedure. It was shown that the second
mode responses were very dependent on the �rst mode.
Amabili [5] studied geometrically nonlinear vibration of
shallow shells subjected to harmonic excitation. Sim-
ply supported boundary conditions were considered.
Furthermore, the nonlinear equations of motion were
generated by Lagrangian approach and solved through
numerical techniques. Large-amplitude free vibration
of magneto-electro-elastic curved panels was studied
by Shooshtari and Razavi [6]. Electrostatics and
magnetostatics were considered by Gauss's laws, and
the equations of motion were obtained by Donnell shell
theory. Displacements and rotations were presented by
trial functions. Governing nonlinear partial di�erential
equations were transformed into nonlinear ordinary
di�erential equations by using Galerkin method; there-
after, they were solved by the perturbation method.
The analysis of funicular shells due to various static
loads was carried out in many pieces of research. Vafai
et al. [7] compared experimental values of membrane
stresses and vertical de
ections with FEM results,
where good agreement was obtained. Forty-�ve con-
crete funicular shells (square bases supported at four
edges) with di�erent rises and types of reinforcement
were loaded up to the failure point with a concentrated
central load. It was observed that the crack and failure
loads were signi�cantly related to the rise of shells.
Weber et al. [8] investigated ultimate load for concrete
funicular shells by testing ten models with di�erent
geometric features. It was found that the ultimate load
was dependent on the rise and thickness of the shell;
by increasing the rise parameter (square of the ratio of
rise to thickness), the ultimate load will also increase.
Moreover, Vafai and Farshad [9] indicated that the
failure load of funicular shells was a�ected by the age
of concrete shell and the amount of reinforcement.
Elangovan [10] applied the FEM in order to analyze
funicular shells with clamped boundaries loaded with
a uniformly distributed load. The eight-node isopara-

metric elements along with �ve degrees of freedom
for each node were used. The analysis de�nes the
zone in which tension is generated and reinforcement
is required. Rajasekaran and Sujatha [11] studied
deep funicular shells using Boundary Integral Element
Method (BIEM). Due to the governing equation for
deep funicular shells being nonlinear, it is di�cult to
obtain a closed-form solution in order to determine
the con�guration of deep funicular shells. In addition,
an incremental iterative technique along with BIEM
was applied to solve the nonlinear di�erential equation.
Lakshmikandhan et al. [12] presented the e�ect of
the span-to-rise ratio on the performance of concrete
funicular shells by applying FEM The results indicated
that a reduction in the span-to-rise ratio resulted in
a reduction in de
ection, maximum compression, and
maximum edge beam tension with improved sti�ness.
Similar to the previous study, Sivakumar et al. [13]
considered the behavior of concrete funicular shells
with a rectangular base under uniformly distributed
load. A reduction in membrane stresses and de
ections
was discovered when the rise and thickness increased.
Siddesh et al. [14] compared the performances of con-
crete funicular shells under concentrated load and the
slabs. Analysis was performed via FEM. Six funicular
shell units with a rectangular plan of 1� 0:7 m, rise of
5 and 10 cm, and thicknesses of 5, 4, and 2 cm were
considered. Each shell unit was compared with a slab
of the same thickness and dimension. The de
ection of
the shell models was found to be 34% to 83% less than
that of the slab models. Sachithanantham [15] studied
concrete funicular shells over a square plan with 0% to
16% openings under concentrated load using FEM. It
was concluded that with an increase in percentage of
openings, the de
ection, membrane stress, and bending
stress of concrete funicular shells also increased up to
800%, 6%, and 60%, respectively. Moreover, some
other researchers considered the ultimate load along
with the de
ection of concrete funicular shells over
a rectangular plan of di�erent dimensions under a
concentrated static load [16{19].

In this paper, a closed-form analytical solution to
the forced linear vibration of concrete funicular shells
with a rectangular base under impulse loads is inves-
tigated. Two boundary conditions, simply supported
and clamped, are considered. Step pulse, triangular
pulse, and sine pulse are considered as impulse load
types that are applied to a rectangular area. The
analysis is based on the expansion of each displacement
component in a double Fourier series, which satis�es
the boundary conditions. Strain-displacement rela-
tionships based on shallow shells theory are used to
compute elastic strain energy. After computing kinetic
energy, elastic strain energy, and the virtual work
completed by external forces in terms of displacement
components, the equations of motion are obtained by
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Lagrangian approach. Moreover, the analytical solu-
tions to the equations of motion are developed via the
modal analysis technique. The e�ciency of the analysis
has been examined by comparing the results with those
of FEM. At the same time, the results indicate that
tensile stresses in addition to compressive stresses form
in funicular shells under impulse loads. On the other
hand, displacements and stresses, especially tensile
stresses, under dynamic impulse loads are negligible
up to an amplitude of the load, which is computable.
Furthermore, the e�ect of rise and span of the funicular
shell pertaining to the time response of the shell is
shown.

2. Funicular shell surface over a rectangular
ground plan

The surface equation of a shallow funicular shell of
double curvature, which carries dead weight in its
membrane state by pure compression, could be given
as follows [20]:

@2Z
@x2 +

@2Z
@y2 =

g
N
; (1)

where Z = f(x; y) is the surface equation of the
funicular shell, N is the desired compressive stress,
and g is the dead weight of the shell. The following
equation, which is an approximate solution to Eq. (1),
is used to de�ne the funicular shell surface over a
rectangular ground plan [12]:

Z =
5
8
g
N

1
â2 + b̂2

h
â2 � (x� â)2

i �
b̂2 � �y � b̂�2

�
=H

"
1� (x� â)2

â2

#2641�
�
y � b̂�2

b̂2

375 ; (2)

where â = a=2, b̂ = b=2, and a, b are the lengths of
edges in x and y directions, respectively. H is also the
rise of the funicular shell. Moreover, Figure 1 shows
the surface generated through Eq. (2). Displacements
of an arbitrary point on the middle surface in x, y, and
z directions are u, v, and w, respectively; w is taken
positive inwards.

3. Kinetic energy, strain energy, and virtual
work done by external loads

3.1. Kinetic energy
The kinetic energy T of the shell, by neglecting rotary
inertia, is given by:

T =
1
2
�h

aZ
0

bZ
0

�
_u2 + _v2 + _w2� dxdy; (3)

Figure 1. Funicular surface and coordinate system.

where � is the mass density, and h is the thickness of
the shell. The over dot means a time derivative.

3.2. Strain energy
According to the shallow shells theory presented in
the work of Velasov, the relationships between middle
surface strains and changes in curvatures with middle
surface displacement components are as follows [20]:

"x =
@u
@x
� rw; (4)

"y =
@v
@x
� tw; (5)


xy =
@u
@y

+
@v
@x
� 2sw; (6)

�x =
@2w
@x2 ; (7)

�y =
@2w
@y2 ; (8)

�xy =
@2w
@x@y

; (9)

where:

r =
@2Z
@x2 ; t =

@2Z
@y2 ; s =

@2Z
@x@y

: (10)

"x, "y, and 
xy are the middle surface strains, and �x,
�y, and �xy are the changes in curvatures and twist of
the middle surface.

The stress components (�x, �y, and �xy) are
linearly distributed across the thickness of the elastic
shell. In addition, the stress resultants alongside the
stress couples of the middle surface that are also named
internal forces (Nx, Ny, and Nxy) and moments (Mx,
My, and Mxy) are obtained through the integration of
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the stress distribution over the shell thickness. The
relationships between stress components and internal
forces, as well as moments, are [21]:

�zx =
Nx
h

+
12Mx

h3 z; (11)

�zy =
Ny
h

+
12My

h3 z; (12)

�zxy =
1

2h
(Nxy +Nyx) +

6
h3 (Mxy +Myx)z; (13)

where z is the distance from the middle surface.
The stress resultant-strain and stress couple-

curvature relations are [20]:

Nx =
Eh

1� �2 ("x + �"y); (14)

Ny =
Eh

1� �2 ("y + �"x); (15)

Nxy = Nyx =
Eh
2

1� �
1� �2 
xy; (16)

Mx = �D(�x + ��y); (17)

My = �D(�y + ��x); (18)

Mxy = �D(1� �)�xy; (19)

where E is Young's modulus, � is the Poisson's ratio,
and D = Eh3=[12(1� �2)].

If the displacement components are calculated,
the middle surface strains and changes in curvatures by
Eqs. (4) to (10) and the internal forces along with the
internal moments and stress components by Eqs. (11)
to (19) can be obtained.

The following equation presented the strain en-
ergy with reference to the middle surface strains and
changes in curvatures [21]:

U=
Eh

2(1��2)

aZ
0

bZ
0

"
"2
x+"2

y+2�"x"y+
1� �

2

2
xy

#
dxdy

+
Eh3

24(1� �2)

aZ
0

bZ
0

�
�2
x + �2
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+2(1� �)�2
xy
�
dxdy: (20)

The �rst integral represents the membrane strain en-
ergy, whereas the second term indicates the bending
strain energy. Through Eqs. (4) to (10), the strain
energy can be presented in terms of displacement
components:

U=
Eh

2(1��2)
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0

bZ
0
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dxdy: (21)

3.3. Virtual work done by external loads
The virtual work, W , completed by external forces is
obtained as follows:

W =
aZ

0

bZ
0

(qxu+ qyv + qzw)dxdy; (22)

where qx, qy, and qz are the distributed forces per unit
area in x, y, and z directions, respectively. In the
present study, the applied impulsive load is distributed
over a rectangular area and considered to be in the
z direction. The applied load area, whose center
corresponds to the center of the shell, is shown in
Figure 2. Furthermore, Eq. (22) can be rewritten in
the following form:

W =
0:6aZ

0:4a

0:6bZ
0:4b

qzwdxdy: (23)

The external, normal impulsive load qz is considered

Figure 2. The area of applied load in plan.
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by three types: step pulse, triangular pulse, and sine
pulse. In general:

A. Step pulse:(
qz(t) = F0; 0 � t � td
qz(t) = 0; t � td

B. Triangular pulse:(
qz(t) = F0(1� t=td); 0 � t � td
qz(t) = 0; t � td

C. Sine pulse:(
qz(t) = F0 sin(�t=td); 0 � t � td
qz(t) = 0; t � td

where F0 is the magnitude of the force, and td is the
time duration of applying impulsive load.

4. Boundary conditions and Fourier series of
displacement components

The following boundary conditions are considered in
this study.

Model A. Simply supported conditions
For simply supported conditions where shell edges rest
on diaphragms that are rigid in their own plane and

exible out of the plane, the boundary conditions are
given by:

v = w = Nx = Mx = 0 at x = 0; a; (24)

u = w = Ny = My = 0 at y = 0; b; (25)

where N is the normal force, and M is the bending
moment per unit length.

The displacements u, v, and w can be presented
in the following double Fourier series, satisfying the
boundary conditions:

u(x; y; t)=
MX
m=1

NX
n=1

um;n(t) cos
�m�x

a

�
sin
�n�y

b

�
;
(26)

v(x; y; t)=
MX
m=1

NX
n=1

vm;n(t) sin
�m�x

a

�
cos
�n�y

b

�
;
(27)

w(x; y; t)=
MX
m=1

NX
n=1

wm;n(t) sin
�m�x

a

�
sin
�n�y

b

�
;
(28)

where m and n are the number of expressions used in
the Fourier series in x and y directions, respectively,
and t is time. In addition, um;n, vm;n, and wm;n are
the generalized coordinates that are unknown functions
of t. The convergence of the solution can be considered
by using di�erent terms in Eqs. (26){(28);

Model B. Clamped edge conditions

u = v = w = 0; Mx = c
@w
@x

at x = 0; a; (29)

u = v = w = 0; My = c
@w
@y

at y = 0; b; (30)

where c is the sti�ness per unit length of the elastic
and distributed rotational springs placed at four edges.
Model B was developed in [22] and provides �xed edge
in-plane with free rotation by c = 0 and a perfectly
clamped condition (@w=@x = 0 and @w=@y = 0)
obtained for c!8. The displacements u, v, and w
can be presented in the following double Fourier series,
which satisfy the boundary conditions:

u(x; y; t)=
MX
m=1

NX
n=1

um;n(t) sin
�m�x

a

�
sin
�n�y

b

�
;

(31)

v(x; y; t)=
MX
m=1

NX
n=1

vm;n(t) sin
�m�x

a

�
sin
�n�y

b

�
; (32)

w(x; y; t)=
MX
m=1

NX
n=1

wm;n(t) sin
�m�x

a

�
sin
�n�y

b

�
:
(33)

When c is not zero, an additional potential energy is
generated in the rotational springs that must be added
to the elastic strain energy. This potential energy, UR,
is given by:

UR =
1
2

bZ
0

c

(��
@w
@x

�
x=0

�2

+
��

@w
@x

�
x=a

�2
)
dy

+
1
2

aZ
0

c

8<:"�@w@y �y=0

#2

+

"�
@w
@y

�
y=b

#2
9=; dx:

(34)

By substituting w from Eq. (33) and considering c as
constant, we get:

UR =
MX
m=1

NX
n=1

cw2
m;n

�
m2�2b

2a2 +
n2�2a

2b2

�
: (35)

For both boundary conditions, through the sub-
stitution of double Fourier series of displacement com-
ponents in Eqs. (3), (21), and (23), the kinetic energy,
the strain energy, and the virtual work performed by
external loads will be obtained with regard to the
generalized coordinates (um;n, vm;n, and wm;n), which
are suitable forms for them to use in Lagrange equa-
tions of motion. After the substitution of displacement
components, the kinetic energy for both boundary
conditions is obtained as follows:
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T =
1
2
�h
ab
4

MX
m=1

NX
n=1

�
_u2
m;n + _v2

m;n + _w2
m;n
�
: (36)

Moreover, the strain energy for each of the boundary
conditions is obtained as follows:

Model A. Simply supported conditions

U =
MX
m=1

NX
n=1

�
�1u2

m;n + �2v2
m;n + �3w2

m;n

+�4um;nvm;n + �5um;nwm;n + �6vm;nwm;n]

+
MX
m=1

NX
na=nb=1

[�7wm;nawm;nb + �8um;nawm;nb

+�9vm;nawm;nb] +
MX

mi;mj=1

NX
n=1

[�10wmi;nwmj;n

+�11vmi;nwmj;n + �12umi;nwmj;n]

+
MX

mi=mj=1

NX
na=nb=1

[�13wmi;nawmj;nb

+�14umi;nawmj;nb + �15vmi;nawmj;nb] : (37)

Model B. Clamped edge conditions

U =
MX
m=1

NX
n=1

�
�1u2

m;n + �2v2
m;n + �3w2

m;n
�

+
MX
m=1

NX
na;nb=1

[�7wm;nawm;nb+�16vm;nawm;nb]

+
MX

mi;mj=1

NX
n=1

[�10wmi;nwmj;n+�17umi;nwmj;n]

+
MX

mi=mj=1

NX
na=nb=1

[�13wmi;nawmj;nb

+ �18umi;navmj;nb + �19umi;nawmj;nb

+�20vmi;nawmj;nb] + UR: (38)

Basically, UR is the additional potential energy that is
generated in the rotational springs. The coe�cients �1
to �20 are presented in the appendix.

For both boundary conditions, W is:

W =
MX
m=1

NX
n=1

qzwm;n(t)
ab

mn�2 [cos(0:4m�)

� cos(0:6m�)][cos(0:4n�)� cos(0:6n�)]: (39)

5. Lagrange equations of motion

The Lagrange equations of motion are:

d
dt

�
@T
@ _qj

�
� @T
@qj

+
@U
@qj

= Qj ; j = 1; � � � ; dofs;
(40)

where q = fum;n; vm;n; wm;ngT , m = 1; � � � ;M ,
n = 1; � � � ; N , and dofs = M�; N . Moreover, the
generalized forces Qj are presented in the following
equation by assuming viscous type for the nonconser-
vative damping forces:

Qj = � @F
@ _qj

+
@W
@qj

: (41)

Nonconservative damping forces of viscous type are
presented as follows:

F =
1
2
c

aZ
0

bZ
0

�
_u2 + _v2 + _w2� dxdy

=
1
2
ab
4

MX
m=1

NX
n=1

cm;n
�

_u2
m;n + _v2

m;n + _w2
m;n
�
; (42)

�m;n =
cm;n

(2�m;n!m;n)
; (43)

where �m;n, �m;n, and !m;n are modal damping
ratio, natural frequency, and modal mass of mode
(m;n). Damping forces have insigni�cant e�ect on the
responses of impact load; therefore, one can neglect
damping forces.

For both boundary conditions, the kinetic energy
was determined through Eq. (36). In addition, the
virtual work completed by external forces was deter-
mined through Eq. (39). Therefore, three terms of the
Lagrange equations are the same for both boundary
conditions. In particular:

d
dt

�
@T
@ _qj

�
= �h

ab
4

�qj ; (44)

@T
@qj

= 0; (45)

Qj = � @F
@ _qj

+
@W
@qj

= �
�
ab
4

�
cj _qj

+

8>>>>>><>>>>>>:
0 if qj = um;n; vm;n

qz
ab

mn�2 [cos(0:4m�)� cos(0:6m�)]
[cos(0:4n�)� cos(0:6n�)]

if qj = wm;n

(46)
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The strain energy was determined through Eqs. (37)
and (38) for simply supported and clamped edge
conditions, respectively. Therefore, one can write the
following for each boundary condition:

@U
@qj

=
dofsX
k=1

qk�̂j;k; (47)

where coe�cients �̂j;k can be determined with regard
to coe�cients �1 to �20.

6. Results and discussion of numerical analysis

The equations of motion that are obtained through the
Lagrangian approach and regardless of damping forces
can be presented in the following matrix form:

[m] [�q] + [k][q] = [F ]; (48)

and:

[q] = [q1 � � � qj � � � qM;N ]T : (49)

The system presented above for di�erential equations
can be solved by the modal technique. In Eq. (48), [m]
and [k] can be considered as mass and sti�ness ma-
trices, respectively. Thus, with these two matrices,
one can determine natural frequencies of the funicular
shell. By solving this system of di�erential equations,
generalized coordinates um;n, vm;n, and wm;n are ob-
tained in terms of time. Then, by using Fourier series,
displacement components are determined. By deter-
mining displacement components, strains and stresses
generated in the shell are acquired. In order to obtain
the numerical results, a computer code was written.
Furthermore, as mentioned earlier, no study is available
for the dynamic response of funicular shells. Therefore,
the dynamic analysis of funicular shells is completed
FEM in order to compare its results with those of the
analytical approach. In the present study, geometric
and material properties of the funicular shell are given
as follows (material is concrete):

a = 1 m; b = 1 m; E = 17:8 GPa;

� = 0:2; � = 2400 kg/m; h = 0:03 m;

H = 0:09 m:

The magnitude of force (F0) is equal to 60 kPa, the
area of applied load is 0:2�0:2 = 0:04 m2, and the time
duration of the applied load is 0.01 sec. In addition,
the number of considered degrees of freedom used
in the mode expansion of displacement components
(m;n) is (3 � 15) for simply supported conditions
and (4 � 15) for clamped edge conditions. Moreover,
there are 10 considered modes in the modal analysis
technique for both methods, i.e., analytical and FEM.
Evidently, Figure 3 indicates the comparison of the

Figure 3. Comparison of center normal displacement of
simply supported conditions for two di�erent cases.

Table 1. Natural frequency of mode (1,1) for di�erent
boundary conditions.

Boundary conditions
Natural frequency

(Hz)
Analytical FEM

Simply supported 197.77 195.57
Clamped
Edge

c = 0 362.84 380.39
c = 180000 (N/rad) 379.85 380.39

center de
ection of a simply supported funicular shell
for two di�erent cases. In case 1, the number of degrees
of freedom used in the mode expansion is (3� 15) and
in case 2 is (5 � 20). The good agreement between
the results shown in Figure 3 shows the convergence of
Fourier series of displacement components.

Table 1 shows the natural frequency of mode (1,1)
that is obtained with analytical and FEMs for each of
the two di�erent boundary conditions. The agreement
between the analytical solution and FEM solution is
excellent, as is clearly shown in Table 1. For clamped
edge conditions, good agreement is obtained for c =
180000. All of the results of the analytical method per-
taining to clamped edge conditions that are presented
subsequently are obtained for c = 180000 N/rad.

Tables 2 and 3 present a comparison of the
maximum values of center normal de
ection along with
the center stresses found in x direction with FEM for
di�erent impulse loads.

Figure 4 shows the center normal displacement
of simply supported in comparison with the FEM.
Figure 5 also shows this comparison for clamped edge
conditions.

The good agreement between the results found in
Tables 2 and 3 along with Figures 4 and 5 indicates
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Table 2. Comparison of the maximum values of center
normal de
ection and center stresses of simply supported
conditions for di�erent pulses.

Impulse load De
ection
(�10�4 m)

�x (MPa)
C� T��

Step pulse Analytical 1.6 {1.9 0.66
FEM 1.6 {1.7 0.84

Triangular
pulse

Analytical 1.3 {1.6 1
FEM 1.3 {1.4 0.87

Sine pulse Analytical 0.94 {1.1 0.24
FEM 0.95 {0.92 0.19

�: Compression; ��: Tension.

Table 3. Comparison of the maximum values of center
normal de
ection and center stresses of clamped edge for
di�erent pulses.

Impulse load De
ection
(�10�4 m)

�x (MPa)
C� T��

Step pulse Analytical 0.92 {1.6 1
FEM 1 {1.8 0.87

Triangular
pulse

Analytical 0.83 {1.5 0.83
FEM 0.88 {1.6 0.95

Sine pulse Analytical 0.51 {0.89 0.19
FEM 0.59 {1 0.2

�: Compression; ��: Tension.

Figure 4. Center normal displacement of simply
supported conditions for sine pulse.

Figure 5. Center normal displacement of clamped edge
conditions for sine pulse.

Figure 6. Center normal displacement of simply
supported conditions for harmonic load.

the validity of the proposed method. In Figure 5, the
comparison of the proposed method and �nite element
shows a phase di�erence between the results that could
be related to the value of the sti�ness c (sti�ness of
rotational springs). In order to simulate clamped edges,
the value of the sti�ness c is determined only with
regard to the natural frequency of mode (1,1).

Figure 6 shows the comparison of center de
ection
of simply supported and the FEM for a harmonic
force, qz = F0 sin(!t), where the load frequency (!)
is equal to 1:2 !1;1 (!1;1 is the natural frequency of
the fundamental mode). In regard to the harmonic
load, the e�ect of damping should be considered. The
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Figure 7. Center normal displacement of simply
supported conditions for di�erent pulses.

Figure 8. Center normal displacement of clamped edge
conditions for di�erent pulses.

modal damping ratio of all modes is to be assumed
4%, and the magnitude of force (F0) is equal to 6 kPa.
Figure 6 shows good convergence between the results
of two methods for harmonic load.

Figures 7 and 8 show the time response of the
center point displacement of the funicular shell with
various pulses for simply supported and clamped edge
conditions, respectively. The largest de
ection occurs
under step pulse due to the area under the load-time
curve being greater than other pulses.

Tables 4 and 5 indicate the maximum and mini-
mum values of internal forces and moments for simply
supported and clamped edge conditions, respectively.

Tables 6 and 7 also indicate the maximum values

Table 4. The maximum and minimum values of internal
forces and moments of simply supported conditions for
di�erent pulses.

Internal forces
and moments

Step
pulse

Triangular
pulse

Sine
pulse

Nx (kN/m) Max 5.45 11.8 3.73
Min {23.1 {19.2 {13.5

Ny (kN/m) Max 5.99 12.5 3.71
Min {23.9 {19.5 {13.5

Nxy (kN/m) Max 9.52 18.3 8.82
Min {31.6 {28.7 {20

Mx (N.M/M) Max 176 160 97.1
Min {122 {105 {43.4

My (N.M/M) Max 164 155 93.5
Min {116 {102 {43

Mxy (N.M/M) Max 34.9 77.5 31.5
Min {115 {108 {55.6

Table 5. The maximum and minimum values of internal
forces and moments of clamped edge for di�erent pulses.

Internal forces
and moments

Step
pulse

Triangular
pulse

Sine
pulse

Nx (kN/m) Max 8.9 9.92 1.94
Min {19.3 {17.8 {10.8

Ny (kN/m) Max 10.8 10.8 2.09
Min {21.4 {18.9 {11.6

Nxy (kN/m) Max 8.31 7.72 1.37
Min {12.6 {11.5 {7.03

Mx (N.M/M) Max 151 135 80.9
Min {108 {75 {44.1

My (N.M/M) Max 141 131 78
Min {101 {79.4 {46.4

Mxy (N.M/M) Max 30.4 26.1 9.32
Min {40.7 {37.2 {22.2

of compressive, tensile, and shear stresses found in the
funicular shell for two boundary conditions.

Tables 4 to 7 show that, under impulse loads,
internal moments form and, thus, tensile and shear
stresses in addition to compressive stresses form. In
this paper, for a plate with the same geometric and
material features and for the same load applied, the dy-
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Table 6. The maximum values of stresses of simply
supported conditions for di�erent pulses.

Stresses Step
pulse

Triangular
pulse

Sine
pulse

�x
(MPa)

Tension 0.69 1.02 0.267

Compression {1.94 {1.61 {1.06

�y
(MPa)

Tension 0.674 0.968 0.312

Compression {1.88 {1.6 {1.04

�xy (MPa) 1.38 1.16 0.866

Table 7. The maximum values of stresses of clamped
edge for di�erent pulses.

Stresses Step
pulse

Triangular
pulse

Sine
pulse

�x
(MPa)

Tension 1.01 0.828 0.193

Compression {1.65 {1.48 {0.895

�y
(MPa)

Tension 1.03 0.831 0.151

Compression {1.65 {1.5 {0.902

�xy (MPa) 0.613 0.556 0.338

Table 8. Comparison of the maximum values of center
normal de
ection and center stresses of simply supported
conditions.

Impulse load De
ection
(�10�4 m)

�x (MPa)

C� T��

Step
pulse

Funicular shell 1.56 {1.67 0.842

Plate 12.2 {4.6 4.6

Sine
pulse

Funicular shell 0.948 {0.924 0.192

Plate 10.3 {3.64 3.64

�: Compression; ��: Tension.

namic responses are obtained with the FEM. Tables 8
and 9 show the comparison of the maximum values
of center normal de
ection, center compressive, and
tensile stresses between the funicular shell and the plate
for simply supported and clamped edge conditions,
respectively.

Tables 8 and 9 indicate that, in regard to the
plate, the compressive and tensile stresses are the same
due to the bending performance of the plate. The
tables also indicate that the normal de
ection and

Table 9. Comparison of the maximum values of center
normal de
ection and center stresses of clamped edge
conditions.

Impulse load De
ection
(�10�4 m)

�x (MPa)

C� T��

Step
pulse

Funicular shell 1.04 {1.83 0.871

Plate 5.33 {3.49 3.49

Sine
pulse

Funicular shell
0.591 {1.03 0.195

Plate

�: Compression; ��: Tension.

Figure 9. Center normal displacement of simply
supported conditions for sine pulse and also for di�erent
rises.

stresses, especially tensile stresses found in the plate,
are larger than those of funicular shell. In other words,
tensile stresses found in the plate are 4 to 15 times
larger than those found in the funicular shell.

Essentially, as mentioned in the introduction, the
rise of the funicular shell is an important parameter
in the performance of the funicular shell under static
loads. Here, the e�ect of the rise of the funicular
shell is considered for dynamic load. By increasing the
rise of the shell, the maximum value of center normal
displacement and the corresponding time response will
decrease (Figure 9).

If the dimension of plan (a) increases, the maxi-
mum values of center normal displacement and stresses
along with time response of normal displacement will
increase (Table 10 and Figure 10).

Table 10 indicates that, for a = 3 m, the center
tensile stress of the funicular shell is 9.8 MPa. By
increasing the shell rise from H = 0:15 m to H =
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Table 10. Comparison of the maximum value of center
stresses of simply supported conditions for sine pulse and
also for di�erent plan dimensions.

Plan
dimension (a)

�x (MPa)

Compression Tension

1.5 {1.72 0.495

2 {3.71 0.617

2.5 {6.92 5.16

3 {10.2 9.8

Figure 10. Center normal displacement of simply
supported conditions for sine pulse and also for di�erent
plan dimensions.

0:27 m, the center tensile stress of the shell decreases
to 3.3 MPa, which shows a 67% reduction. Thus,
the span-to-rise ratio signi�cantly a�ects the stresses,
particularly tensile stresses.

7. Summary and conclusions

In this study, an analytical solution in regard to the
forced linear vibration of concrete funicular shells on
a rectangular ground plan under impulse loads for two
di�erent boundary conditions was presented based on
the shallow shells theory. The results, successfully
veri�ed against �nite element technique, reveal that:

- The largest de
ection occurs under step pulse due
to the area under time-load curve being greater than
the other two pulses;

- The performance of the funicular shell under impulse
loads is much better than that of the rectangular 
at
plate;

- Under impulse loads, tensile stresses in addition to
compressive stresses form in funicular shells;

- The de
ections and stresses, especially tensile
stresses, under dynamic impulse loads are negligible
up to an amplitude of the load that is computable;

- The e�ect of rise and span on the time response
of the shell has been considered. From a general
perspective, the smaller the ratio of span to rise
is, the smaller the displacements and stresses will
be. In fact, by choosing an appropriate span-to-
rise ratio, the displacements and stresses, especially
tensile stresses, will decrease signi�cantly.
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In the above equation, both indices of m, i and j should
be even or odd, one of the indices of n, a or b should
be even, and the other one should be odd. Otherwise,
this equation will be equal to zero.
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