Refrences:
1.Fernandez, A.J. On maximum likelihood prediction based on type-II doubly censored exponential data", Metrika, 50, pp. 211-220 (2000).
2. Khan, H.M.R., Provost, S.B., and Singh, A. Predictive inference from a two-parameter Rayleigh life model given a doubly censored sample", Communications in Statistics-Theory and Methods, 39, pp. 1237- 1246 (2010).
3. Kim, C. and Song, S. Bayesian estimation of the parameters of the generalized exponential distribution from doubly censored samples", Statistical Papers, 51, pp. 583-597 (2010). 4. Khan, H.M.R., Albatineh, A., Alshahrani, S., Jenkins, N., and Ahmed, N.U. Sensitivity analysis of predictive modeling for responses from the three-parameter Weibull model with a follow-up doubly censored sample of cancer patients", Computational Statistics and Data Analysis, 55, pp. 3093-3103 (2011). 5. Pak, A., Parham, G.A., and Saraj, M. On estimation of Rayleigh scale parameter under doubly type-II censoring from imprecise data", Journal of Data Science, 11, pp. 305-322 (2013). 6. Feroze, N. and Aslam, M. Bayesian analysis of doubly censored lifetime data using two-component mixture of Weibull distribution", Journal of the National Science Foundation of Sri Lanka, 42(4), pp. 325-334 (2014). 7. Sindhu, T.N., Feroze, N., and Aslam, M. Analysis of doubly censored Burr type-II distribution: a Bayesian look", Electronic Journal of Applied Statistical Analysis, 8(2), pp. 154-169 (2015). 8. Rattanapitikon, W. Veri_cation of conversion formulas for computing representative wave heights", Ocean Engineering, 37, pp. 1554-1563 (2010). 9. Siddiqui, M.M. Some problems connected with Rayleigh distributions", The Journal of Research of the National Bureau of Standards, 60(D), pp. 167-174 (1962). 10. Ahmed, S.A. and Mahammed, H.O. A statistical analysis of wind power density based on Weibull and Rayleigh models of Penjwen Region" Sulaimani/ Iraq", Jordan Journal of Mechanical and Industrial Engineering, 6(2), pp. 135-140 (2012). 11. Chivers, R.C. The scattering of ultrasound by human tissues, some theoretical models", Ultrasound Medical Biology, 3, pp. 1-13 (1977). 12. Ali, S., Aslam, M., Kundu, D., and Kazmi, S.M.A. Bayesian estimation of the mixture of generalized exponential distribution: a versatile lifetime model in industrial processes", Journal of the Chinese Institute of Industrial Engineers, 29(4), pp. 246-269 (2012). 13. Bhattacharya, C.G. A simple method of resolution of a distribution into Gaussian components", Biometrics, 23, pp. 115-135 (1967). 14. Harris, C.M. On _nite mixtures of geometric and negative binomial distributions", Communications in Statistics-Theory and Methods, 12, pp. 987-1007 (1983). 15. Jedidi, K., Jagpal, H.S., and DeSarbo, W.S. Finitemixture structural equation models for response-based segmentation and unobserved heterogeneity", Marketing Science, 16(1), pp. 39-59 (1997). 16. Shawky, A.I. and Bakoban, R.A. On _nite mixture of two-component Exponentiated Gamma distribution", Journal of Applied Sciences Research, 5(10), pp. 1351- 1369 (2009). 17. Sultan, K.S., Ismail, M.A., and Al-Moisheer, A.S. Mixture of two inverse Weibull distributions: Properties and estimation", Computational Statistics & Data Analysis, 51(1), pp. 5377-5387 (2007). 18. Santos, A.M. Robust estimation of censored mixture models", PhD Thesis, University of Colorado Denver (2011). 19. Al-Hussaini, E.K. and Hussein, M. Estimation under a _nite mixture of exponentiated exponential components model and balanced square error loss", Open Journal of Statistics, 2, pp. 28-38 (2012). 20. Mohammadi, A. and Salehi-Rad, M.R. Bayesian inference and prediction in an M/G/1 with optional second service", Communications in Statistics-Simulation and Computation, 41(3), pp. 419-435 (2012). 21. Ahmad, A.E.A. and Al-Zaydi, A.M. Inferences under a class of _nite mixture distributions based on generalized order statistics", Open Journal of Statistics, 3, pp. 231-244 (2013). 22. Mohammadi, A., Salehi-Rad, M.R., and Wit, E.C. Using mixture of Gamma distributions for Bayesian analysis in an M/G/1 queue with optional second service", Computational Statistics, 28(2), pp. 683-700 (2013). 23. Ali, S. Mixture of the inverse Rayleigh distribution: properties and estimation in Bayesian framework", Applied Mathematical Modelling, 39(2), pp. 515-530 (2014). 24. Ateya, S.F. Maximum likelihood estimation under a _nite mixture of generalized exponential distributions based on censored data", Statistical Papers, 55(2), pp. 311-325 (2014). 25. Mohamed, M.M., Saleh, E., and Helmy, S.M. Bayesian prediction under a _nite mixture of generalized Exponential lifetime model", Pakistan Journal of Statistics and Operation Research, 10(4), pp. 417-433 (2014). 26. Zhang, H. and Huang, Y. Finite mixture models and their applications: a review", Austin Biometrics and Biostatistics, 2(1), pp. 1-6 (2015). 27. Aslam, M. An application of prior predictive distribution to elicit the prior density", Journal of Statistical Theory and Applications, 2, pp. 70-83 (2003). 28. Legendre, A.M. New methods for the determination of cometary orbits: Appendix on the least squares method" [Nouvelles m_ethodes pour la d_etermination des orbites des com_etes: Appendice sur la m_ethode des moindres car_res], Gautheir-Villars, Paris (1806). 29. Norstrom, J.G. The use of precautionary loss function in risk analysis", Reliability, IEEE Transactions on, 45(3), pp. 400-403 (1996). 30. DeGroot. M.H., Optimal Statistical Decision, McGraw-Hill (2005). 31. G_omez, Y.M., Bolfarine, H., and G_omez, H.W. A new extension of the Exponential distribution", Revista Colombiana de Estad__stica, 37(1), pp. 25-34 (2014).