Bonferroni harmonic mean operators based on two-dimensional uncertain linguistic information and their applications in land utilization ratio evaluation

Document Type : Article


School of Management Science and Engineering, Shandong University of Finance and Economics, Jinan 250014, Shandong, China.


The Bonferroni mean (BM) has the advantages that it can capture the interrelationship among the input arguments, and the Harmonic mean is a conservative average lying between the max and min operators. The 2-dimension uncertain linguistic variables add a subjective evaluation on the reliability of the evaluation results given by decision makers, so they can better express fuzzy information. In this paper, in order to combine the advantages of them, we first propose the 2-dimensional uncertain linguistic weighted Bonferroni mean (2DULWBM) operator. However, it cannot consider the case when the given arguments are too high or too low. So we further proposed the 2-dimensional uncertain linguistic improved weighted Bonferroni harmonic mean (2DULIWBHM) operator, which combine the 2DULWBM with Harmonic Mean. Furthermore, we study some desirable properties and some special cases of them. Further, we develop a new method to deal with some multi-attribute group decision making (MAGDM) problems under 2-dimension uncertain linguistic environment based on the proposed operators. Finally, an illustrative example is given to testify the validity of the developed method by comparing with the other existing methods.


Main Subjects

1.Churchman, C.W., Acko_, R.L., and Arno_, E.L.,  Introduction to Operations Research, Wiley, New York  (1957). 
2. Chen, T.Y., Chang, C.H., and Lu, J.R. The extended  QUALIFLEX method for multiple criteria decision  analysis based on interval type-2 fuzzy sets and applications  to medical decision making", Eur J Oper Res,  226(3), pp. 615-625 (2013). 
3. Chuu, S.J. Interactive group decision-making using a  fuzzy linguistic approach for evaluating the exibility  in a supply chain", Eur J Oper Res, 213(1), pp. 279-  289 (2011).  4. Liu, F., Wang, W.G., and Zhang, Z.X. A goal  programming model for incomplete interval multiplicative  preference relations and its application in group  decision-making", Eur J Oper Res, 218(3), pp. 747-  754 (2012).  5. Ye, J. Fuzzy decision-making method based on the  weighted correlation coe_cient under intuitionistic  fuzzy environment", Eur J Oper Res, 205(1), pp. 202-  204 (2010). 6. Zhang, C., Zhou, G.Z., and Zhu, W.D. Research on  peer review system for the national science foundation  based on two-dimensional semantics evidence reasoning",  China Soft Sci, 2, pp. 176-182 (2011).  7. Liu, P.D. and Tang, G.L. Multi-criteria group  decision-making based on interval neutrosophic uncertain  linguistic variables and Choquet integral",  Cognitive Computation, 8(6), pp. 1036-1056 (2016).  8. Xu, Z.S. Intuitionistic fuzzy aggregation operators",  IEEE Transactions on Fuzzy Systems, 15(6), pp. 1179-  1187 (2007).  9. Zadeh, L.A. The concept of a linguistic variable and  its application to approximate reasoning-I", Inf Sci,  8(3), pp. 199-249 (1975).  10. Zadeh, L.A. The concept of a linguistic variable and  its application to approximate reasoning-II", Inf Sci,  8(4), pp. 301-357 (1975).  11. Zadeh, L.A. The concept of a linguistic variable and  its application to approximate reasoning-III", Inf Sci,  9(1), pp. 43-80 (1975).  12. Liu, P.D. and Jin, F. Methods for aggregating  intuitionistic uncertain linguistic variables and their  application to group decision making", Inf Sci, 205,  pp. 58-71 (2012).  13. Wei, G.W. Interval valued hesitant fuzzy uncertain  linguistic aggregation operators in multiple attribute  decision making", International Journal of Machine  Learning and Cybernetics, 7(6), pp. 1093-1114 (2016).  14. Lu, M. and Wei, G.W. Models for multiple attribute  decision making with dual hesitant fuzzy uncertain  linguistic information", International Journal of  Knowledge-Based and Intelligent Engineering Systems,  20(4), pp. 217-227 (2016).  15. Li, Q.X., Zhao, X.F., and Wei, G.W. Model for  software quality evaluation with hesitant fuzzy uncertain  linguistic information", Journal of Intelligent and  Fuzzy Systems, 26(6), pp. 2639-2647 (2014).  16. Zhou, L.Y., Lin, R., Zhao, X.F., and Wei, G.W.  Uncertain linguistic prioritized aggregation operators  and their application to multiple attribute group decision  making", International Journal of Uncertainty,  Fuzziness and Knowledge-Based Systems, 21(4), pp.  603-627 (2013).  17. Yu, X.H., Xu, Z.S., Liu, S.S., and Chen, Q. Multicriteria  decision making with two-dimension linguistic  aggregation techniques", Int. J. Intell. Syst, 27(6), pp.  539-562 (2012).  18. Zhu, W.D., Zhou, G.Z., and Yang, S.L. An approach  to group decision making based on two-dimension  linguistic assessment information", Syst. Eng, 27(2),  pp. 113-118 (2009).  19. Liu, P.D. and Zhang, X. An approach to group  decision making based on two-dimension uncertain  linguistic assessment information", Technol. Econ. Develop.  Econ, 18(3), pp. 424-437 (2012).  20. Liu, P.D. and Yu, X.C. Two-dimension uncertain  linguistic power generalized weighted aggregation operator  and its application for multiple attribute group  decision making", Knowledge-Based Systems, 57(1),  pp. 69-80 (2014).  21. Liu, P.D., Liu, Z.M., and Zhang, X. Some intuitionistic  uncertain linguistic Heronian mean operators and  their application to group decision making", Applied  Mathematics and Computation, 230(1), pp. 570-586  (2014).  22. Liu, P.D. and Wang, Y.M. Multiple attribute  decision-making method based on single valued neutrosophic  normalized weighted Bonferroni mean", Neural  Computing and Applications, 25(7-8), pp. 2001-2010  (2014).  23. Zhang, W.C., Xu, Y.J., and Wang, H.M. A consensus  reaching model for two-tuple linguistic multiple  attribute group decision making with incomplete  weight information", International Journal of Systems  Science, 47(2), pp. 389-405 (2016).  24. Ji, P., Wang, J., and Zhang, H. Frank prioritized  Bonferroni mean operator with single-valued neutrosophic  sets and its application in selecting third party  logistics", Neural Computing and Applications, 30(3),  pp. 799-823 (2018).  25. Nie, R.X., Wang, J., and Li, L. 2-tuple linguistic  intuitionistic preference relation and its application in  sustainable location planning voting system", Journal  of Intelligent & Fuzzy Systems, 33(2), pp. 885-899  (2017).  26. Peng, H., Wang, J., and Chen, P. A linguistic intuitionistic  multi-criteria decision-making method based  on the Frank Heronian mean operator and its application  in evaluating coal mine safety", International  Journal of Machine Learning and Cybernetics, 9(6),  pp. 1053-1068 (2018).  27. Peng, J.J., Wang, J., Wu, X., and Tian, C. Hesitant  intuitionistic fuzzy aggregation operators based on the  archimedean t-norms and t-conorms", International  Journal of Fuzzy Systems, 19(3), pp. 702-714 (2017).  28. Wang, J.Q., Yang, Y., and Li, L. Multi-criteria  decision-making method based on single valued neutrosophic  linguistic Maclaurin symmetric mean operators",  Neural Computing and Applications, 30(5), pp.  1529-1547 (2018).  29. Jiang, X.P. and Wei, G.W. Some Bonferroni mean  operators with two-tuple linguistic information and  their application to multiple attribute decision making",  Journal of Intelligent and Fuzzy Systems, 27, pp.  2153-2162 (2014).  30. Liu, P.D. Multi-attribute decision-making method  research based on interval vague set and TOPSIS  method", Technological and Economic Development of  Economy, 15(3), pp. 453-463 (2009).  31. Liu, P.D. and Wang, M.H. An extended VIKOR  method for multiple attribute group decision making  based on generalized interval-valued trapezoidal fuzzy numbers", Scienti_c Research and Essays, 6(4), pp.  766-776 (2011).  32. Liu, P.D. and Zhang, X. Research on the supplier  selection of supply chain based on entropy weight  and improved ELECTRE-III method", International  Journal of Production Research, 49(3), pp. 637-646  (2011).  33. Yu, S.M., Wang, J., and Wang, J.Q. An extended  TODIM approach with intuitionistic linguistic numbers",  International Transactions in Operational Research,  25(3), pp. 781-805 (2018).  34. Tian, Z.P., Wang, J., Wang, J.Q., and Zhang, H.Y.  An improved MULTIMOORA approach for multicriteria  decision-making based on interdependent inputs  of simpli_ed neutrosophic linguistic information",  Neural Computing and Applications, 28(sup 1), pp.  585-597 (2017).  35. Xu, Z.S. and Yager, R.R. Some geometric aggregation  operators based on intuitionistic fuzzy sets", International  Journal of General Systems, 35(4), pp. 417-433  (2006).  36. Zhang, X., Liu, P.D., and Wang, Y.M. Multiple  attribute group decision making methods based on intuitionistic  fuzzy frank power aggregation operators",  Journal of Intelligent & Fuzzy Systems, 29(5), pp.  2235-2246 (2015).  37. Wang, F., Zeng, S., and Zhang, C. A method based  on intuitionistic fuzzy dependent aggregation operators  for supplier selection", Mathematical Problems in  Engineering, 2013, pp. 1-9 (2013).  38. Meng, F., Zhang, Q., and Zhan, J. The intervalvalued  intuitionistic fuzzy geometric choquet aggregation  operator based on the generalized banzhaf  index and two-additive measure", Technological and  Economic Development of Economy, 21(2), pp. 186-  215 (2015).  39. Bonferroni, C. Sulle medie multiple di potenze",  Bolletino Matematica Italiana., 5(3-4), pp. 267-270  (1950).  40. Wei, G.W., Zhao, X.F., and Lin, R. Uncertain  linguistic Bonferroni mean operators and their application  to multiple attribute decision making", Applied  Mathematical Modelling, 37(7), pp. 5277-5285 (2013).  41. Liu, P.D., Liu, J.L., and Chen, S.M. Some intuitionistic  fuzzy Dombi Bonferroni mean operators and their  application to multi-attribute group decision making",  Journal of the Operational Research Society, DOI:  10.1057/s41274-017-0190-y (2017).  42. Ding, Z.H. and Wu, Y.Y. An improved intervalvalued  hesitant fuzzy multi-criteria group decisionmaking  method and applications", Mathematical and  Computational Applications, 21(2), pp. 1-12 (2016).  43. Sun, H. and Sun, M. Generalized Bonferroni harmonic  mean operators and their application to multiple  attribute decision making", Journal of Computational  Information Systems, 8(14), pp. 5717-5724 (2012).  44. Xu, Z.S. Induced uncertain linguistic OWA operators  applied to group decision making", Inf Fusion, 7(2),  pp. 231-238 (2006).  45. Xu, Z.S. Fuzzy harmonic mean operators", International  Journal of Intelligent Systems, 24(2), pp. 152-  172 (2009).  46. Liu, P.D. and Chu, Y.C. Some two-dimensional uncertain  linguistic Heronian mean operators and their  application in multiple-attribute decision making",  Neural Compute & Application, 26(6), pp. 1461-1480  (2015).