Quasi-reflection-based symbiotic organisms search algorithm for solving static optimal power Flow problem

Document Type : Article

Authors

Department of Electrical Engineering, National Institute of Technology, Agartala, India.

Abstract

This paper offers a novel variant to the existing symbiotic organisms search (SOS) algorithm, to address optimal power flow (OPF) problems considering effects of valve-point loading (VE) and prohibited zones (POZ). Problem formulation includes minimization of cost, loss, voltage stability index (VSI) and voltage deviation (VD) and simultaneous minimization of their combinations. Quadratic cost function, effects of VE and effects of both VE and POZ have been considered. OPF formulation considering effects of both VE and POZ are not yet available in the literature. Efficacy of SOS in resolving OPF is recognized in the literature. An opposition based learning technique named quasi-reflection, is merged into existing SOS to enhance its prospects of getting nearer to superior quality solution. The proposed algorithm, named quasi-reflected symbiotic organisms search (QRSOS), is assessed for IEEE 30 and IEEE 118 bus test systems. It shows promising results in reducing the objective function values of both the systems by large margins (78.98 % in case of VD when compared to SOS and NSGA-II and 46.06 % in case of loss as compared to QOTLBO in IEEE 30 and IEEE 118 bus respectively). QRSOS also outperformed its predecessors, in terms of convergence speed and global search ability.

Keywords

Main Subjects


1. De Carvalho, E.P., dos Santos, A., and Ma, T.F. Reduced gradient method combined with augmented Lagrangian and barrier for the optimal power ow problem", Applied Mathematics and Computation, 200(2), pp. 529-536 (2008). 2. Momoh, J.A., Adapa, R., and El-Hawary, M.E. A review of selected optimal power ow literature to 1993. I. Nonlinear and quadratic programming approaches", IEEE Transactions on Power Systems, 14(1), pp. 96- 104 (1999). 3. Santos, A.J. and Da Costa, G.R.M. Optimal-power- ow solution by Newton's method applied to an augmented Lagrangian function", IEE Proceedings- Generation, Transmission and Distribution, 142(1), pp. 33-36 (1995). A. Saha et al./Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 1664{1689 1687 4. Yan, X. and Quintana, V.H. Improving an interiorpoint- based OPF by dynamic adjustments of step sizes and tolerances", IEEE Transactions on Power Systems, 14(2), pp. 709-717 (1999). 5. Huneault, M. and Galiana, F.D. A survey of the optimal power ow literature", IEEE Transactions on Power Systems, 6(2), pp. 762-770 (1991). 6. Zhang, S. and Irving, M.R. Enhanced Newton- Raphson algorithm for normal, controlled and optimal power ow solutions using column exchange techniques", IEE Proceedings-Generation, Transmission and Distribution, 141(6), pp. 647-657 (1994). 7. Habibollahzadeh, H., Luo, G.X., and Semlyen, A. Hydrothermal optimal power ow based on a combined linear and nonlinear programming methodology", IEEE Transactions on Power Systems, 4(2), pp. 530-537 (1989). 8. Burchett, R.C., Happ, H.H., and Vierath, D.R. Quadratically convergent optimal power ow", IEEE Transactions on Power Apparatus and Systems, 11, pp. 3267-3275 (1984). 9. Yuryevich, J. and Wong, K.P. Evolutionary programming based optimal power ow algorithm", IEEE Transactions on Power Systems, 14(4), pp. 1245-1250 (1999). 10. Lai, L.L., Ma, J.T., Yokoyama, R., and Zhao, M. Improved genetic algorithms for optimal power ow under both normal and contingent operation states", International Journal of Electrical Power & Energy Systems, 19(5), pp. 287-292 (1997). 11. Swain, A.K. and Morris, A.S. A novel hybrid evolutionary programming method for function optimization", In Evolutionary Computation, Proceedings of the 2000 Congress, on IEEE, 1, pp. 699-705 (2000). 12. Abido, M.A. Optimal power ow using particle swarm optimization", International Journal of Electrical Power & Energy Systems, 24(7), pp. 563-571 (2002). 13. El Ela, A.A., Abido, M.A., and Spea, S.R. Optimal power ow using di_erential evolution algorithm", Electric Power Systems Research, 80(7), pp. 878-885 (2010). 14. Abido, M.A. Optimal power ow using tabu search algorithm", Electric Power Components and Systems, 30(5), pp. 469-483 (2002). 15. Cai, J., Ma, X., Li, L., Yang, Y., Peng, H., and Wang, X. Chaotic ant swarm optimization to economic dispatch", Electric Power Systems Research, 77(10), pp. 1373-1380 (2007). 16. Roy, P.K., Ghoshal, S.P., and Thakur, S.S. Biogeography based optimization for multi-constraint optimal power ow with emission and non-smooth cost function", Expert Systems with Applications, 37(12), pp. 8221-8228 (2010). 17. Tripathy, M. and Mishra, S. Bacteria foraging-based solution to optimize both real power loss and voltage stability limit", IEEE Transactions on Power Systems, 22(1), pp. 240-248 (2007). 18. Khazali, A.H. and Kalantar, M. Optimal reactive power dispatch based on harmony search algorithm", International Journal of Electrical Power & Energy Systems, 33(3), pp. 684-692 (2011). 19. Roy, P.K., Mandal, B., and Bhattacharya, K. Gravitational search algorithm based optimal reactive power dispatch for voltage stability enhancement", Electric Power Components and Systems, 40(9), pp. 956-976 (2012). 20. Basu, M. Teaching-learning-based optimization algorithm for multi-area economic dispatch", Energy, 68, pp. 21-28 (2014). 21. Mandal, B. and Roy, P.K. Multi-objective optimal power ow using quasi-oppositional teaching learning based optimization", Applied Soft Computing, 21, pp. 590-606 (2014). 22. Abido, M.A. Multiobjective particle swarm optimization for optimal power ow problem", In Handbook of Swarm Intelligence, pp. 241-268, Springer Berlin Heidelberg (2011). 23. Hernandez, Y.R. and Hiyama, T. Minimization of voltage deviations, power losses and control actions in a transmission power system", In Intelligent System Applications to Power Systems, 2009. ISAP'09. 15th International Conference on, pp. 1-5, IEEE (November 2009). 24. Roy, P.K., Ghoshal, S.P., and Thakur, S.S. Multiobjective optimal power ow using biogeography-based optimization", Electric Power Components and Systems, 38(12), pp. 1406-1426 (2010). 25. Sivasubramani, S. and Swarup, K.S. Multi-objective harmony search algorithm for optimal power ow problem", International Journal of Electrical Power & Energy Systems, 33(3), pp. 745-752 (2011). 26. Bhattacharya, A. and Chattopadhyay, P.K. Application of biogeography-based optimisation to solve different optimal power ow problems", IET Generation, Transmission & Distribution, 5(1), pp. 70-80 (2011). 27. Cheng, M.Y. and Prayogo, D. Symbiotic organisms search: a new metaheuristic optimization algorithm", Computers & Structures, 139, pp. 98-112 (2014). 28. Duman, S. Symbiotic organisms search algorithm for optimal power ow problem based on valve-point e_ect and prohibited zones", Neural Computing and Applications, pp. 1-15 (2016). 29. Tizhoosh, H.R. Opposition-based learning: a new scheme for machine intelligence", In Computational Intelligence for Modelling, Control and Automation, 2005 and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, International Conference on, 1, pp. 695-701, IEEE (November 2005). 30. Rahnamayan, S., Tizhoosh, H.R., and Salama, M.M. Quasi-oppositional di_erential evolution", In Evolutionary Computation, 2007. CEC 2007. IEEE Congress on, pp. 2229-2236, IEEE (September 2007). 1688 A. Saha et al./Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 1664{1689 31. Ergezer, M., Simon, D., and Du, D. Oppositional biogeography-based optimization", In Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International Conference on pp. 1009-1014, IEEE (October 2009). 32. Zhang, C., Ni, Z., Wu, Z., and Gu, L. A novel swarm model with quasi-oppositional particle", In Information Technology and Applications, 2009. IFITA'09. International Forum on, 1, pp. 325-330, IEEE (May 2009). 33. Alsac, O. and Stott, B. Optimal load ow with steady-state security", IEEE Transactions on Power Apparatus and Systems, 3, pp. 745-751 (1974). 34. K_l__c, U. Backtracking search algorithm-based optimal power ow with valve point e_ect and prohibited zones", Electrical Engineering, 97(2), pp. 101-110 (2015). 35. Narimani, M.R., Azizipanah-Abarghooee, R., Zoghdar-Moghadam-Shahrekohne, B., and Gholami, K. A novel approach to multi-objective optimal power ow by a new hybrid optimization algorithm considering generator constraints and multi-fuel type", Energy, 49, pp. 119-136 (2013). 36. Bakirtzis, A.G., Biskas, P.N., Zoumas, C.E., and Petridis, V. Optimal power ow by enhanced genetic algorithm", IEEE Transactions on Power Systems, 17(2), pp. 229-236 (2002). 37. Saini, A., Chaturvedi, D.K., and Saxena, A.K. Optimal power ow solution: a GA-fuzzy system approach", International Journal of Emerging Electric Power Systems, 5(2), pp. 1-21 (2006). 38. Niknam, T., Rasoul Narimani, M., Jabbari, M., and Malekpour, A.R. A modi_ed shu_e frog leaping algorithm for multi-objective optimal power ow", Energy, 36(11), pp. 6420-6432 (2011). 39. Ongsakul, W. and Bhasaputra, P. Optimal power ow with FACTS devices by hybrid TS/SA approach", International Journal of Electrical Power & Energy Systems, 24(10), pp. 851-857 (2002). 40. Sayah, S. and Zehar, K. Modi_ed di_erential evolution algorithm for optimal power ow with non-smooth cost functions", Energy Conversion and Management, 49(11), pp. 3036-3042 (2008). 41. Ongsakul, W. and Tantimaporn, T. Optimal power ow by improved evolutionary programming", Electric Power Components and Systems, 34(1), pp. 79-95 (2006). 42. Sood, Y.R. Evolutionary programming based optimal power ow and its validation for deregulated power system analysis", International Journal of Electrical Power & Energy Systems, 29(1), pp. 65-75 (2007). 43. Bouktir, T., Slimani, L., and Mahdad, B. Optimal power dispatch for large scale power system using stochastic search algorithms", International Journal of Power & Energy Systems, 28(2), p. 118 (2008). 44. Yuryevich, J. and Wong, K.P. Evolutionary programming based optimal power ow algorithm", IEEE Transactions on Power Systems, 14(4), pp. 1245-1250 (1999). 45. Bouktir, T., Labdani, R., and Slimani, L. Economic power dispatch of power system with pollution control using multiobjective particle swarm optimization", Journal of Pure & Applied Sciences, 4(2), pp. 57-77 (2007). 46. Niknam, T., Narimani, M.R., Aghaei, J., Tabatabaei, S., and Nayeripour, M. Modi_ed honey bee mating optimisation to solve dynamic optimal power ow considering generator constraints", IET Generation, Transmission & Distribution, 5(10), pp. 989-1002 (2011). 47. Abido, M.A. Optimal power ow using tabu search algorithm", Electric Power Components and Systems, 30(5), pp. 469-483 (2002). 48. Basu, M. Multi-objective optimal power ow with FACTS devices", Energy Conversion and Management, 52(2), pp. 903-910 (2011). 49. Malik, T.N., ul Asar, A., Wyne, M.F., and Akhtar, S. A new hybrid approach for the solution of nonconvex economic dispatch problem with valve-point e_ects", Electric Power Systems Research, 80(9), pp. 1128-1136 (2010). 50. Thitithamrongchai, C. and Eua-Arporn, B. Selfadaptive di_erential evolution based optimal power ow for units with non-smooth fuel cost functions", Journal of Electrical Systems, 3(2), pp. 88-99 (2007). 51. Ozyon, S., Ya_sar, C.,  Ozcan, G., and Temurta_s, H. An arti_cial bee colony algorithm (abc) approach to nonconvex economic power dispatch problems with valve point e_ect", In National Conference on Electrical, Electronics and Computer (FEEB'11), pp. 294-299 (2011). 52. Ya_sar, C. and Ozyon, S. A new hybrid approach for nonconvex economic dispatch problem with valvepoint e_ect", Energy, 36(10), pp. 5838-5845 (2011). 53. Ayd_N, D. and Ozyon, S. Solution to non-convex economic dispatch problem with valve point e_ects by incremental arti_cial bee colony with local search", Applied Soft Computing, 13(5), pp. 2456-2466 (2013). 54. Wilcoxon, F. Individual comparisons by ranking methods", Biometrics Bulletin, 1(6), pp. 80-83 (1945). 55. Lee, F.N. and Breipohl, A.M. Reserve constrained economic dispatch with prohibited operating zones", IEEE Transactions on Power Systems, 8(1), pp. 246- 254 (1993). 56. Niknam, Taher, Hasan Doagou Mojarrad, and Hamed Zeinoddini Meymand Non-smooth economic dispatch computation by fuzzy and self adaptive particle swarm optimization", Applied Soft Computing, 11(2), pp. 2805-2817 (2011). 57. Abaci, K. and Yamacli, V. Di_erential search algorithm for solving multi-objective optimal power ow problem", International Journal of Electrical Power & Energy Systems, 79, pp. 1-10 (2016). 58. Data, IEEE 118-Bus Test System Data, The Electrical and Computer Engineering Department, Illinois Institute of Technology, Available at: http://motor. ece.iit.edu/data/JEAS IEEE118.doc A. Saha et al./Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 1664{1689 1689 59. Ghasemi, M., Ghavidel, S., Aghaei, J., Gitizadeh, M., and Falah, H. Application of chaos-based chaotic invasive weed optimization techniques for environmental OPF problems in the power system", Chaos, Solitons & Fractals, 69, pp. 271-284 (2014). 60. Ghasemi, M., Ghavidel, S., Rahmani, S., Roosta, A., and Falah, H. A novel hybrid algorithm of imperialist competitive algorithm and teaching learning algorithm for optimal power ow problem with non-smooth cost functions", Engineering Applications of Arti_cial Intelligence, 29, pp. 54-69 (2014). 61. Ghasemi, M., Ghavidel, S., Ghanbarian, M.M., Massrur, H.R., and Gharibzadeh, M. Application of imperialist competitive algorithm with its modi_ed techniques for multi-objective optimal power ow problem: a comparative study", Information Sciences, 281, pp. 225-247 (2014). 62. Ghasemi, M., Ghavidel, S., Ghanbarian, M.M., Gharibzadeh, M., and Vahed, A.A. Multi-objective optimal power ow considering the cost, emission, voltage deviation and power losses using multi-objective modi_ed imperialist competitive algorithm", Energy, 78, pp. 276-289 (2014). 63. Chaib, A.E., Bouchekara, H.R.E.H., Mehasni, R., and Abido, M.A. Optimal power ow with emission and non-smooth cost functions using backtracking search optimization algorithm", International Journal of Electrical Power & Energy Systems, 81, pp. 64-77 (2016). 64. Shaheen, A.M., El-Sehiemy, R.A., and Farrag, S.M. Solving multi-objective optimal power ow problem via forced initialised di_erential evolution algorithm", IET Generation, Transmission & Distribution, 10(7), pp. 1634-1647 (2016). 65. Reddy, S.S., Bijwe, P.R., and Abhyankar, A.R. Faster evolutionary algorithm based optimal power ow using incremental variables", International Journal of Electrical Power & Energy Systems, 54, pp. 198-210 (2014). 66. Reddy, S.S., Abhyankar, A.R., and Bijwe, P.R. Reactive power price clearing using multi-objective optimization", Energy, 36(5), pp. 3579-3589 (2011). 67. Reddy, S.S. and Rathnam, C.S. Optimal power ow using glowworm swarm optimization", International Journal of Electrical Power & Energy Systems, 80, pp. 128-139 (2016). 68. Reddy, S.S. and Bijwe, P.R. Day-Ahead and Real Time Optimal Power Flow considering Renewable Energy Resources", International Journal of Electrical Power & Energy Systems, 82, pp. 400-408 (2016). 69. Surender Reddy, S. Optimal power ow with renewable energy resources including storage", Electrical Engineering, 99(2), pp. 685-695 (2017). 70. Das, A.K., Majumdar, R., Panigrahi, B.K., and Reddy, S.S. Optimal power ow for Indian 75 bus system using di_erential evolution", In International Conference on Swarm, Evolutionary, and Memetic Computing, pp. 110-118, Springer Berlin Heidelberg (December 2011). 71. Mandal, B. and Roy, P.K. Optimal reactive power dispatch using quasi-oppositional teaching learning based optimization", International Journal of Electrical Power & Energy Systems, 53, pp. 123-134 (2013). 72. Bhattacharya, A. and Chattopadhyay, P.K. Solution of economic power dispatch problems using oppositional biogeography-based optimization", Electric Power Components and Systems, 38(10), pp. 1139- 1160 (2010).