
Scientia Iranica D (2019) 26(3), 1664{1689

Sharif University of Technology
Scientia Iranica

Transactions D: Computer Science & Engineering and Electrical Engineering
http://scientiairanica.sharif.edu

Quasi-reection-based symbiotic organisms search
algorithm for solving static optimal power ow problem

A. Saha�, A.K. Chakraborty, and P. Das

Department of Electrical Engineering, National Institute of Technology, Agartala, India.

Received 1 October 2016; received in revised form 20 February 2017; accepted 18 September 2017

KEYWORDS
OPF;
POZ;
Quadratic fuel cost
function;
QRSOS;
SOS;
Valve-point loading.

Abstract. This paper o�ers a novel variant to the existing Symbiotic Organisms Search
(SOS) algorithm to address the Optimal Power Flow (OPF) problems considering e�ects
of valve-point loading (VE) and prohibited zones (POZ). Problem formulation includes
minimization of cost, loss, Voltage Stability Index (VSI), Voltage Deviation (VD), and
simultaneous minimization of their combinations. Quadratic cost function, e�ects of VE,
and e�ects of both VE and POZ have been considered. OPF formulation considering
e�ects of both VE and POZ is not yet available in the literature. E�cacy of SOS in
resolving OPF is recognized in the literature. An opposition-based learning technique,
named quasi-reection, is merged into existing SOS to enhance its prospects of getting closer
to superior quality solution. The proposed algorithm, named Quasi-Reected Symbiotic
Organisms Search (QRSOS), is assessed for IEEE 30 and IEEE 118 bus test systems. It
shows promising results in reducing the objective function values of both systems by large
margins (78.98% in case of VD when compared to SOS and NSGA-II and 46.06% in case
of loss as compared to QOTLBO in IEEE 30 and IEEE 118 bus, respectively). QRSOS
also outperformed its predecessors in terms of convergence speed and global search ability.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Power systems are designed to deliver power to the
loads in an e�cient and economical manner. Due to
the ever-increasing load demands, the ever-changing
network parameters require existing systems to be more
robust. OPF helps tune the existing network param-
eters in order to overcome various challenges faced
by the system due to voltage instability, transmission
capacity augmentation, transmission loss due to insuf-
�cient reactive power sources, etc. after satisfying di-
verse equality and inequality bounds. Equality bounds
comprise power balance equations, whereas inequality
bounds state the range of dependent and independent
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variables. The OPF is a non-linear and bounded
optimization problem. A number of techniques for
resolving the OPF problem are available in the lit-
erature. Techniques based on classical methods [1-
8] include reduced gradient method, Newton-Raphson,
Lagrangian relaxation, linear programming, and inte-
rior point method, to name a few. The main problem
with classical optimization techniques is that they are
too unable to achieve feasible solutions without making
necessary approximations. However, approximations
result in sub-optimal solutions. To overcome the limi-
tations of classical methods, researchers have resorted
to applying evolutionary algorithms for solving the
OPF problem. The main advantage of evolutionary
algorithms is that they are easy to formulate and
are designed by studying the behavior of di�erent
organisms in nature. Moreover, they can adapt them-
selves to the problem by updating their population
iteratively. Several heuristic algorithms have been
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projected for solving nonlinear OPF: Evolutionary
Programming (EP) [9], Genetic Algorithm (GA) [10],
Hybrid Evolutionary Programming (HEP) [11], Parti-
cle Swarm Optimization (PSO) [12], Di�erential Evo-
lution algorithm (DE) [13], tabu search [14], Chaotic
Ant Swarm Optimization Algorithm (CASOA) [15],
Biogeography-Based Optimization (BBO) [16], Bac-
teria Foraging Optimization (BFO) [17], Harmony
Search Algorithm (HSA) [18], Gravitational Search Al-
gorithm (GSA) [19], teaching-learning-based algorithm
(TLBO) [20], quasi-oppositional teaching-learning-
based optimization (QOTLBO) [21], etc. Their e�cacy
has been proven.

For Multi-Objective Optimization (MOO), re-
searchers have applied high-end soft-computing tech-
niques with varying degrees of success. Abido [22]
in 2011 used PSO to resolve the MOO. Pareto-
based MOO techniques, such as TLBO and QOTLBO,
were implemented to �nd the best conceding solution
in [21]. In [23], a multi-objective genetic algorithm,
based on NSGA-II, was applied to minimize voltage
deviation, power loss, and the number of controls in
a transmission network. In 2010, Roy et al. [24]
implemented BBO algorithm for solving MOO OPF
in 9, 26, and IEEE 118-bus systems [21]. In [25],
Multi-Objective Harmony Search (MOHS) for the OPF
problem was framed as a non-linear problem with
constraints. Bhatacharya and Chattopadhyay [26]
presented a Biogeography-Based Optimization (BBO)
technique to solve OPF problems of a power system
having generators with both non-convex and convex
fuel cost characteristics. Cheng and Prayogo [27]
proposed a new metaheuristic algorithm, named Sym-
biotic Organisms Search (SOS). In [28], Duman em-
ployed (SOS) to address OPF by considering VE and
POZ. Opposition-based learning was �rst proposed
by Tizhoosh [29] followed by the emergence of quasi-
opposition-based learning by Rahnamayan et al. [30]
which was found to give superior performance as com-
pared to its predecessor. Ergezer et al. [31] proposed
quasi-reection-based learning that required the least
computational work as compared to other opposition-
based techniques. In [32] Zhang et al. proposed an
enhanced version of the Opposition-Based PSO known
as the Quasi-oppositional comprehensive learning PSO,
which employed Opposition-Based Learning (OBL) for
population initialization and selection. Instead of
opposition numbers, the algorithm used quasi-opposite
particles generated from the interval between the me-
dian and the opposite position of the particle. Appli-
cations of various evolutionary algorithms to OPF are
demonstrated in [33-53], few of which also considered
non-smooth cost functions. Wilcoxon [54] presented
ranking methods for individual comparison. In [55,56]
OPF considering POZs was solved. Abaci and Ya-
macli [57] used Di�erential Search Algorithm (DSA)

for solving MOO-OPF problems. In [58] IEEE 118 bus
data was presented. In [59-64] a solution to MOO-OPF
using di�erent evolutionary algorithms was presented.
Ref. [65-70] dealt with solving OPF using incremental
variables, glowworm swarm optimization, DE, and also
with renewables including storage. In [71,72] reactive
and economic power dispatch problems were solved
using QOTLBO and BBO, respectively.

This paper presents a novel technique designated
as quasi-reected symbiotic organisms search (QRSOS)
by applying opposition-based learning to the actual
SOS [27] to address the OPF problem for di�erent
objectives. It is based on quasi-reection, founded on
opposite numbers theory and has already been proven
mathematically of having the greatest possibility of
an existing near-optimum solution when compared to
all other opposition-based learning techniques [31].
To hasten the convergence of SOS, the present au-
thors have incorporated the opposition-based learning
scheme into the existing SOS.

The paper is divided into the following sections.
Section 2 discusses formulation of OPF in detail.
Section 3 presents a brief description of the existing
SOS. Section 4 details a formulation of the proposed
algorithm and its advantages over other meta-heuristic
algorithms. Section 5 presents the simulation results
and statistical analysis of the test results. Section 6
concludes the total work.

2. Construction of the OPF problem

The problem generally deals with de�ning the opti-
mal parameter settings to minimize the total cost of
fuel, subject to diverse equality as well as inequality
constraints. The following equations may be used to
express an OPF problem mathematically:

minC(r; s); (1)

subject to j(r; s) = 0; (2)

and k(r; s) � 0; (3)

where C is the objective for optimization, and s and
r are vectors of independent and dependent variables,
respectively.

Vector r involving slack bus power PG1, load bus
voltage VLi, reactive power delivered by generator QGi,
and transmission line loading SLi can be represented as
follows:

rT =
�
PG1; VL1; :::; VLPQ; QG1; :::; QGPV ;

SL1; :::; SLTL
�
: (4)

Vector of independent variables s involving generator



1666 A. Saha et al./Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 1664{1689

real power output, PGi, excluding the slack bus, gener-
ator bus voltage, VGi, shunt VAR compensator output,
QCi, transformer tap setting, TCi, can be represented
as follows:

sT =
�
PG2; :::; PGPV ; VG1; :::; VGPV ;

QC1; :::; QCNC ; T1; :::; TNT
�
; (5)

where PQ;PV;NC; TL, and NT are the number of
load buses, generator buses, compensators, transmis-
sion lines, and tap changing transformers, respectively.

Equality constraints set g, demonstrating load
ow equations, may be stated as follows:

PGi�PDi=Vi
NBUSX
k=1

Vk (Gik cos �ik+Bik cos �ik); (6)

where i = 1; 2; 3; :::; NBUS.

QGi�QDi=Vi
NBUSX
k=1

Vk (Gik sin �ik+Bik cos �ik); (7)

where i = 1; 2; 3; :::; NBUS.
where PGi and QGi are the real and reactive

powers injected into the network, PDi and QDi are the
real and reactive power demands at the ith bus, Gik
and Bik are conductance and susceptance, �ik is the
di�erence between the phase angles of the voltages at
the ith and kth buses, and NBUS is the overall number
of buses comprising the system.

The following equations are representative of the
set of inequality constraints h.

Generator limit constraints: The generator con-
straints are described below [21]:

V min
Gk � VGk � V max

Gk ; (8)

Pmin
Gk � PGk � Pmax

Gk ; k = 1; 2; 3; :::; PV; (9)

Qmin
Gk � QGk � Qmax

Gk ; (10)

where PV is the total of generator buses counting the
slack bus.

Transformer constraints: The transformer con-
straint is indicated as follows [21]:

Tmin
k � Tk � Tmax

k ; k = 1; 2; 3; :::; NT; (11)

where NT represents the number of tap changing
transformers.

Security constraints: These constraints involve
lower and upper limits on the voltages of PQ buses as
well as maximum line loadings and can be represented
as follows [21]:

V min
Lk � VLk � V max

Lk k = 1; 2; 3; :::; PQ; (12)

SLk � Smax
Lk k = 1; 2; 3; :::; TL; (13)

where PQ and TL represent the total of load buses and
transmission lines, respectively.

To keep the �nal output within operating bounds,
the inequality constraints on the dependent vari-
ables are integrated within the objective function as
quadratic penalty terms. To consider the security con-
straints, objective function (1) is modi�ed as follows:

C mod = C + �P
�
PG1 � P bound

G1
�2

+ �V
PQX
i=1

�
VLi � V bound

Li
�2

+ �Q
PVX
i=1

�
QLi �Qbound

Li
�2

+ �S
TLX
i=1

(SLi � Smax
Li ); (14)

where �P , �V , �Q, and �S are penalty factors, and
xbound is the limit value to which dependent variable x
is set when limit violation occurs. It can be de�ned as
follows:(

xbound = xub when x > xub

xbound = xlb when x < xlb
(15)

2.1. Objective functions
2.1.1. Single-objective functions
Generation cost minimization without VE and POZ
Generation cost represents the overall Fuel Cost (FC)
expressed as a quadratic function of power [21,26]:

C1 = min (F (P )) =

 NGX
i=1

Fi (Pi)

!

=

 NGX
i=1

�
ai + biPi + ciP 2

i
�!

; (16)

where Pi represents output power from generator i, and
Fi(Pi) denotes running cost of the ith generator; ai, bi,
and ci are the cost coe�cients of the ith generating
unit, and NG is the number of generators committed.
Eqs. (6) - (13) are the constraints on this objective.
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FC minimization considering VE
This case is further divided into Test case 2.1 and Test
case 2.2. In both case studies, the following equation
describes the VE [28]:

C2 = min (F (P )) =

 NGX
i=1

Fi (Pi)

!

=

 NGX
i=1

�
ai + biPi + ciP 2

i
�!

+
����di

� sin
�
ei � �Pmin

Gi � PGi������: (17)

Cost minimization with POZ
POZs occur in thermal- or hydro-generating units
due to con�nes of various power system components.
Occurrence of POZ is mainly attributed to the shaft
bearing vibration [35]. Frequency of vibration may
equal the natural frequency causing resonance, thereby
damaging the components. Generating units having
POZ characterized by discontinuous input-output char-
acteristics and operation in those areas are avoided
for economic reasons. With reference to Figure 1, the
POZs can be mathematically explained as follows:

PLBkj;k � Pj � PUBkj;k ; 8j 2 k = 1; 2; 3; :::; n; (18)

where PLBkj;k = Pmin
j ; PUBkj;k = Pmax

j , and n is the total
POZ of each generating unit.

This case optimizes the Quadratic Fuel Cost
(QFC) function in Eq. (16) considering POZs.

Cost minimization with VE and POZ
OPF problem is solved by considering e�ects of both
VE and POZ for the cost function in Eq. (17).

Active power loss minimization
The objective of Real power Transmission Loss (RTL)
is as follows [17]:

Figure 1. Representation of fuel cost with prohibited
operating zones [56].

C3 = min(F (PL))

=
NLX
m=1

Gm
�
V 2
j + V 2

k � 2VjVk cos �jk
�
; (19)

where Gm is conductance of line m connecting buses
j and k; Vj and Vk represent, respectively, voltage
magnitudes at buses j and k; NL is the number
of transmission lines; and �jk represents the angle
di�erence between the two buses. Eqs. (6)-(13) are the
constraints on this objective.

Voltage stability index (L-index) minimization
Mathematically, L-index of any node j can be ex-
pressed as follows [26,71]:

C4 = min(Lj)

Lj =

�����1� NGX
i=1

Fji
Vi
Vj

����� ; (20)

where j = 1; 2; 3; :::; NL, and NL is the number of load
buses:

Fji = �[Y1]�1[Y2]�1;

where Fji is the sub matrix attained after partially
inverting YBUS matrix. Eqs. (6)-(13) represent con-
straints on this objective.

Voltage deviation minimization
Minimization of Voltage Deviation (VD) in all load
buses from the reference voltage of 1 p.u. can be
expressed as follows [26]:

C5 = V D =
NLX
j=1

(Vj � V refj ); (21)

where NL denotes the total of load buses, V refj is the
stated reference value of voltage magnitude at the jth
load bus and is commonly set to be 1.0 p.u. Eqs. (6)-
(13) are the constraints.

Emission minimization
This objective considers minimizing the emission of all
types of pollutants in the atmosphere. A linear model
for emission minimization as provided in [21] has been
considered for the sake of comparison. The constraints
on this objective are (Eqs. (6)-(13)).

C6 =
NGX
k=1

�kPk; (22)

where �k represents emission coe�cient relating to the
kth generator.

2.1.2. Multi-objective functions (MOO)
Simultaneous minimization of QFC and RTL
This MOO is represented as follows:
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Cm1 = w1 � C1 + (1� w1)� C3: (23)

The objective function satis�es the constraints
represented by Eqs. (6)-(13).

Minimization of FC along with RTL considering VE
This MOO function is represented by:

Cm2 = w1 � C2 + (1� w1)� C3: (24)

Constraints of this case are presented in Eq. (6)-(13).

Minimizing FC along with RTL considering VE and
POZ
The MOO function is denoted by Eq. (24). Constraints
of this case are in Eqs. (6)-(13).

Minimizing FC along with VSI while neglecting the
inuence of VE and POZ
The MOO function in this case can be represented as
follows:

Cm3 = w1 � C1 + (1� w1)� C4: (25)

Eqs. (6)-(13) are the constraints on this objective.

Minimizing FC along with VSI considering VE.
The following equation represents the MOO function
in this case:

Cm4 = w1 � C2 + (1� w1)� C4: (26)

Eqs. (6)-(13) are the constraints of this objective.

Minimizing FC along with VSI considering VE and
POZ
This MOO is described by Eq. (26). Eqs. (6)-(13)
represent constraints on this objective function.

Minimizing FC along with VD while neglecting the
e�ect of VE and POZ
This MOO function can be formulated as follows:

Cm5 = w1 � C1 + (1� w1)� C5; (27)

where Eqs. (6)-(13) are the constraints.

Minimization of FC and VD considering the e�ect of
VE
This multi-objective function is formulated as follows:

Cm6 = w1 � C2 + (1� w1)� C5; (28)

where Eqs. (6)-(13) are the constraints to be satis�ed.

Minimizing FC along with VD considering e�ects of
VE as well as POZ
This multi-objective function is described using
Eq. (28) and satis�es the constraints of Eqs. (6)-(13).

In the above multi-objective formulations, w1
denotes weighting factor varying uniformly in the range
(0,1). In this paper, the initial value of w1 is set to 0
and, then, increases in steps of 0.1, i.e., the total range
of (0,1) is divided into 10 intervals.

3. Symbiotic organisms search algorithm
(SOS)

SOS described by Cheng and Prayogo [27] exploits the
symbiotic relationship between organisms in nature.
Three types of symbiosis exist in nature: mutualism,
commensalism, and parasitism. The �rst relationship
involves organisms that are mutually bene�cial to each
other; the second relationship involves organisms, in
which one bene�ts and the other remains neutral of
the association. In parasitism, one organism survives
at the cost of the other.

3.1. Mutualism phase
Organism Xk matches the kth associate of the ecosys-
tem. A new organism Xj is randomly chosen out of
the ecosystem to interact with organism Xk. Both
organisms get engaged in mutualism. New candidate
solutions for the organisms after mutualism are calcu-
lated as follows [27]:

Xknew =Xk + (Xbest �Mutual V ector �BF1)

� rand(0; 1); (29)

Xjnew =Xj + (Xbest �Mutual V ector �BF2)

� rand(0; 1); (30)

Mutual V ector =
Xk +Xj

2
; (31)

where rand(0; 1) represents a vector whose elements
are random numbers. BF1 and BF2 denote the
bene�t factors that each organism has above the other.
Mutual V ector represents the mutualistic relation-
ship.

Organisms involved in mutualism do not derive
equal bene�t from the association. One organism
obtains greater bene�ts than the other. Bene�t factors
(BF1 and BF2) are chosen randomly as 1 or 2, denoting
the degree of bene�t to each organism, i.e., if an
organism attains full or partial bene�ts due to this
interaction.

3.2. Commensalism phase
Organism Xj is selected to interact with organism Xk
acquired from the mutualism phase. In this phase,
organism Xk tries to derive bene�t from the interac-
tion, while Xj remains neutral. Xk is updated only
when its current �tness value is improved as compared
to the previous �tness. Fitness of Xk is calculated as
follows [27]:

Xknew = Xk + (Xbest �Xj) � rand(�1; 1): (32)

3.3. Parasitism phase
Organism Xk creates a Parasite V ector in the search
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region. It is created by replicating and altering the
dimensions of organism Xk with a random number. Xj
acts as the host and is chosen randomly out of the
ecosystem. Both Parasite V ector and host Xj try to
replace each other in the ecosystem; eventually, the
one with a higher �tness value survives and replaces
the other in the ecosystem.

4. Quasi-reection-based learning

Quasi-reection-based learning as proposed by Ergezer
et al. [31] is briey discussed below.

If x is any real number lying within the interval
[a; b] and r = (a+b)=2 denotes the center of the interval,
then its quasi-reected point xqref can be expressed as
follows [31]:

xqref = rand (r; x) ; (33)

where rand(r; x) denotes a random number uniformly
dispersed between r and x.

In an n-dimensional search space, the quasi-
reected point QRP (xqr1 ; x

qr
2 ; x

qr
3 ; :::; x

qr
k ; :::; x

qr
n ) of any

point P (x1; x2; x3; :::; xk; :::; xn) may be de�ned as
shown below:

xqrk = rand
�
ak + bk

2
; xk
�

xk 2 [a; b]

k = 1; 2; 3; :::; n: (34)

4.1. Quasi-reected symbiotic organisms
search algorithm (QRSOS)

QRSOS uses quasi-reection-based learning for popu-
lation initialization as well as generation jumping into
SOS to accelerate the convergence rate. Jumping Rate
(JR) is a control parameter set to jump or skip the
creation of opposite population at certain generations,
thereby saving computational time. Reection Weight,
RW , governs the amount of population reection based

on the solution �tness [72]. RW helps compare
the weakest individuals with their extreme possible
reection, thereby reecting the acceptable solutions
to a nearby point. After generating the quasi-reected
population, the �tness function compares the present
ecosystem with quasi-reected ecosystem to select the
�ttest amongst them. The structure of the proposed
QRSOS algorithm is described below:

Step 1: Create ecosystem (E) with a dimension, Nd,
for speci�ed ecosize and maximum function evalua-
tion (maxFE) randomly within their operating limits
based on Eqs. (8), (9), (11), and (12). Ecosize is
determined by the number of generators, shunt com-
pensators, and tap changing transformers. Elements
of the ecosystem are identi�ed as organisms, with
each one being the representative of a contending
solution to the problem. In addition, the ecosystem
for pre-speci�ed ecosize is initialized;

Step 2: Create a Quasi-Reected Ecosystem (QRE)
inside lower and upper bounds of control variables by
employing Eq. (34);

Step 3: Assess �tness function for each organism
set of the present ecosystem and the quasi-reected
ecosystem;

Step 4: Select NE (ecosize) organisms from the
present Ecosystem (E) as well as the quasi-reected
Ecosystem (QRE) based on their �tness;

Step 5: Update the ecosystem in each phase of SOS
by Eqs. (29)-(32) using the concept of quasi-reected
opposition-based learning;

Step 6: By using Jumping Rate (JR), generate the
quasi-reected ecosystem for the ecosystem updated
in Step 5 as described in Box I [72];

Step 7: Evaluate the �tness function of modi�ed E
and its QRE;

if rand < JR
// Find the absolute of minimum, maximum, and median for the total ecosystem in the current generation.
// Create reection weight RW at the interval [0; 1], which determines the amount of reection based on the

�tness of an individual.
for p = 1 : NE

for q = 1 : Nd
if Ep;q < Median
QREp;q = Ep;q +

�
aq+bq

2 � Ep;q
��RW

else
QREp;q = aq+bq

2 +
�
Ep;q � aq+bq

2

��RW
end

end
end

end
Box I
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Step 8: Select NE number of the �ttest organisms
from E and QRE;
Step 9: Obtain best �tness and best organism.
Best �tness denotes minimum of the �tness function
assessed for each solution set, and best organism
denotes the solution set for which best �tness is
obtained;
Step 10: Go to Step 5 and repeat until maxFE is
prede�ned. Store best �tness value in an array, iden-
tify the Pareto-optimal set, and store best organism
in another array;
Step 11: For multi-objective formulations from
Eqs. (23)-(28), change the value of weighting factor
w1 from 0 to 1 in steps of 0.1 and repeat Steps 1 to
10 till the value of w1 reaches 1.

After altering the ecosystem in Steps 5 and 6, its
feasibility should be tested, i.e., whether they satisfy
the constraints given by Eqs. (8), (9), (11), and (12).
If the organism set obtained is infeasible, they need to
be mapped to a set of viable solutions in the following
manner.

Let Hk be the kth control of OPF problem. If
Hmax
k and Hmin

k denote respectively the upper and
lower limits of the kth control variable. Then, the
operating limit constraints are satis�ed as mentioned
below.

If output of the kth control variable Hk > Hmax
k ,

set Hk = Hmax
k :

If output of the kth control variable Hk < Hmin
k

set Hk = Hmin
k :

After executing all three stages of QRSOS, if the de-
pendent variables are found to violate their respective
operational limits, then that organism set is discarded,
and the three phases are reapplied to the old value till
the operation limits and other constraints, if any, are
satis�ed.

For MOO functions, to attain the set for best
compromise solution, fuzzy membership functions are
analyzed to obtain the satisfactory non-dominated
solution set. Membership function �fk can be de�ned
as follows [38]:8><>:

�fk = 1 fk < fmin
k

fmax
k �fk

fmax
k �fmin

k
fmin
k < fk < fmax

k

0 fk � fmax
k

k = 1; 2; 3; :::; n; (35)

where fmin
k and fmax

k denote respectively minimum and
maximum objective function values. The e�ectiveness

of each solution in satisfying the objectives is measured
by calculating the total of the membership function
values for all objectives. Normalization of membership
functions is done in order to rate the e�cacy of each
non-dominated solution set with respect to all other
non-dominated solution sets (m) and is calculated as
follows:

�j =

nP
k=1

�jfk
mP
j=1

nP
k=1

�jfk

: (36)

The solution set with the maximum normalized
membership �j value is considered as the best non-
dominated solution set.

5. Results and discussion

The algorithm is coded using MATLAB R2014a and
is executed with a PC equipped with Intel Core i7
processor clocked at 3.4 GHz and 2GB RAM. An
ecosize of 30 is chosen to simulate the OPF program
using QRSOS algorithm. Plots of �tness values of
di�erent objective functions are obtained over a span of
100 iterations in each case to analyze the convergence
characteristics of QRSOS.

5.1. Description of the test system; IEEE 30
bus test system

Data and constraints of this system are obtained
from [33-36]. Two sets of generator data and the
corresponding prohibited zones (Tables 1 and 6 of
Ref. [28]) have been used for analyzing the test cases.

5.2. Analysis of the results obtained using
QRSOS

Results achieved using QRSOS are analyzed in detail
in this sub-section. Bold fonts are used to represent
the objective function values and the CPU time for
computation.

5.2.1. Single-objective optimization for IEEE 30 bus
test system

Test case 1: OPF problem neglecting e�ect of VE and
POZ
Test case 1 considers the minimization of QFC de-
scribed by (16) as its objective. Simulation results are
demonstrated in Table 1. The optimized fuel cost using
QRSOS is attained as 798.9299 $/hr. A comparative
study of Test case 1 as shown in Table 2 reveals that
QFC obtained using the proposed technique is lower
than the best value of 801.5733 $/hr, as obtained using
SOS [28]. In addition, the result obtained using the
proposed algorithm is better than that obtained using
other recently applied algorithms, such as Backtracking
Search Algorithm (BSA), Arti�cial Bee Colony (ABC)
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Table 1. Optimum control variable values for various test cases.

Control variables Test case
1

Test case
2.1

Test case
2.2

Test case
3

Test case
4

Generator real
power output (MW)

PG1 177 219.82 199.6 179.2 219.8
PG2 48.664 27.851 20 45 27.96
PG5 21.347 15.837 22.13 21.585 15.76
PG8 21.062 10 27 22.889 10
PG11 11.906 10 12.2 12.49 10
PG13 12 12 12.36 11.533 12

Generator output
voltage (p.u.)

VG1 1.1 1.0813 1.0778 1.0746 1.0811
VG2 1.0881 1.05 1.05 1.05 1.05
VG5 1.0628 1.0232 1.0247 1.0244 1.0237
VG8 1.0694 1.0314 1.0366 1.0332 1.0316
VG11 1.072 1.1 1.0995 1.1 1.0999
VG13 1.1 1.05 1.0497 1.05 1.05

Transformer tap
ratio

T6-9 0.98641 1.0998 1.0384 1.097 1.0997
T6-10 1.0111 0.9191 0.9926 0.9063 0.9182
T4-12 0.99402 0.9882 0.9949 0.9732 0.987
T27-28 0.96114 0.9634 0.9694 0.9584 0.9634

Total fuel cost ($/hr) 798.9299 825.2541 920.1125 801.7593 825.276
Real power loss (MW) 8.5836 12.1087 9.8959 9.3009 12.1128
Voltage stability index (p.u.) 0.1062 0.1292 0.1298 0.1279 0.1291
Voltage deviation (p.u.) 2.0338 0.5703 0.5686 0.6818 0.5775
Simulation time (s) 42.7342 87.5921 110.3562 120.4958 84.3752

Table 2. Comparative study of Test case 1.

Technique Fuel cost ($/hr) Technique Fuel cost ($/hr)

GA [41] 804.1000 HBMO [48] 802.2110

SA [41] 804.1000 EGA [38] 802.0600

GA-OPF[44] 803.9100 FGA [39] 802.0000

SGA [45] 803.6900 MHBMO [48] 801.9850

EP-OPF [44] 803.5700 SFLA [37] 801.9700

EP [46] 802.6200 PSO [36] 801.8900

ACO [47] 802.5700 Hybrid SFLA-SA [37] 801.7900

IEP [43] 802.4600 MPSO-SFLA [36] 801.7500

NLP [34] 802.4000 ABC [35] 801.7100

DE-OPF [42] 802.3900 BSA [35] 801.6300

MDE-OPF [42] 802.3700 SOS [28] 801.5730

TS [49] 802.2900 QRSOS 798.9152

MSFLA [40] 802.2870
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Figure 2. Convergence characteristic of Test case 1.

optimization, Modi�ed Shu�e Frog Leaping Algorithm
(MSFLA), etc., as available in the literature listed in
Table 2. Figure 2 portrays the convergence characteris-
tic of Test case 1. The algorithm converged in less than
twenty iterations, showing faster convergence than its
predecessor does.

Test case 2: OPF problem considering VE.
Test case 2.1
The result obtained for Test case 2.1 is provided in
Table 1, which is derived by employing the generator
cost coe�cients as given in Table 1 of Ref. [28]. The
cost function for this objective is formulated using
Eq. (17). It is seen that the obtained FC considering
VE and using QRSOS algorithm is 825.2541 $/hr.
Comparative study of this test case has been done, as

Figure 3. Convergence characteristic of Test case 2.1.

shown in Table 3. QRSOS provides better result than
the previously obtained best value of 825.2985 $/hr,
as achieved by SOS in [28]. Figure 3 depicts the
convergence characteristics of this test case, and it is
found to converge in less than thirty iterations.

Test case 2.2
Results of this test case are given in Table 1. The
attained FC is 920.1125 $/hr considering valve e�ect,
using QRSOS algorithm, and generator cost coe�cients
as provided in Table 6 of Ref. [28]. The cost function is
described by Eq. (17). Comparative study is provided
in Table 4, which substantiates that the proposed
algorithm achieves better result than others to which
it is compared. Figure 4 depicts the convergence
characteristics of this case, and it is found to converge

Table 3. Comparative study of Test case 2.1.

Technique Fuel cost ($/hr) Technique Fuel cost ($/hr)

RCGA [50] 831.0400 Hybrid SFLA-SA [37] 825.6921
GA [50] 829.4493 ABC [35] 825.6000
SA [37] 827.8262 BSA [35] 825.2300
PSO [37] 826.5897 SOS [28] 825.2985
DE [37] 826.5400 QRSOS 825.2541
SFLA [37] 825.9906

Table 4. Comparative study of Test case 2.2.

Technique Fuel cost ($/hr) Technique Fuel cost ($/hr)

GA [51] 996.0369 ABC [53] 928.4370
GA-APO [51] 996.0369 PSO [54] 925.7581
NSOA [51] 984.9365 MSG-HS [54] 925.6410
ITS [43] 969.1090 IABC [55] 921.8265
TS-SA [43] 959.5630 IABC-LS [55] 921.8235
EP [43] 955.5080 BSA [35] 921.3570
IEP [43] 953.5730 SOS [28] 921.3288
SADE-ALM [52] 944.0310 QRSOS 920.1125
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Figure 4. Convergence characteristic of Test case 2.2.

in about thirty iterations, which is less than one-sixth
of that required by SOS [28].

Test case 3: OPF considering POZ
Generator cost coe�cients as provided in Table 1 of
Ref. [28] and QFC of Eq. (16) are considered. Obtained
results of this test case are provided in Table 4. Table 5
provides a comparative study of this test case. QRSOS
reduces objective function value to 801.7593 $/hr from
the previously obtained best value of 801.8398 $/hr
in [28]. Figure 5 depicts the convergence characteristics
of this method that shows faster convergence in less
than 45 iterations, which is nearly 36.36% of that
required by SOS in [28].

Test case 4: OPF problem considering both VE and
POZ
Generator cost coe�cients provided in Table 1 of [28]
and cost function as described by Eq. (17) are consid-
ered. The result of this case is tabulated in Table 1.

Figure 5. Convergence characteristic of Test case 3.

Figure 6. Convergence characteristic of Test case 4.

Comparative study of this objective is presented in Ta-
ble 6, demonstrating competitiveness of the proposed
algorithm to achieve lower cost. Figure 6 shows a faster
convergence curve of this test case when compared to
SOS [28].

Table 5. Comparative study of Test case 3.

Technique Fuel cost ($/hr) Technique Fuel cost ($/hr)

GA [37] 809.2314 ABC [35] 804.3800
SA [37] 808.7174 BSA [35] 801.8500
PSO [37] 806.4331 SOS [28] 801.8398
SFLA [37] 806.2155 QRSOS 801.7593
Hybrid SFLA-SA [37] 805.8152

Table 6. Comparative study of Test case 4.

Technique Fuel cost ($/hr) Technique Fuel cost ($/hr)

GA [37] 838.1727 ABC [35] 831.6500
SA [37] 836.5364 BSA [35] 826.3700
PSO [37] 835.4785 SOS [28] 825.3705
SFLA [37] 834.8165 QRSOS 825.2760
Hybrid SFLA-SA [37] 834.6339
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Table 7. Comparative study of Test case 5.

Control variables QRSOS QOTLBO [21] TLBO [21] MOHS [25] DSA [57]

Generator real power
output (MW)

PG1 51.244 51.3093 52.1027 52.5327 51.0945
PG2 79.999 80 79.9387 79.5432 80
PG5 50 49.9794 49.9617 49.8152 50
PG8 35 34.9959 34.5287 34.7403 35
PG11 30 29.9988 29.9721 29.7884 30
PG13 40 40 39.8304 39.948 40

Generator output
voltage (p.u.)

VG1 1.1 1.087 1.0798 1.0754 1.0605
VG2 1.0981 1.0825 1.0742 1.0728 1.0566
VG5 1.0803 1.0632 1.0557 1.054 1.0378
VG8 1.0872 1.0707 1.0641 1.0637 1.0453
VG11 1.0712 1.0998 1.0976 1.0991 1.1
VG13 1.1 1.0989 1.0989 1.0967 1.0474

Shunt compensator
injection (p.u.)

QC10 2.81E-05 0.0495 0.0498 0.0499 0.05
QC12 0.0499 0.0499 0.0498 0.0486 0.05
QC15 0.0498 0.0297 0.0497 0.0493 0.05
QC17 0.0498 0.0499 0.0498 0.0488 0.05
QC20 0.0421 0.0387 0.0403 0.0442 0.05
QC21 0.0499 0.05 0.0496 0.0499 0.05
QC23 0.0213 0.0273 0.0267 0.0411 0.0422
QC24 0.0312 0.05 0.0497 0.0499 0.05
QC29 0.0235 0.0207 0.0212 0.0317 0.0303

Transformer tap
ratio

T6-9 1.0199 1.0309 1.0171 1.0022 1.0329
T6-10 0.9773 0.9024 0.9 0.9078 0.9993
T4-12 0.9864 0.9689 0.9681 0.9593 0.9913
T28-27 0.9741 0.9584 0.9527 0.9533 0.9786

Cost($/h) 967.0473 967.0371 965.7677 964.5121 967.6493
Transmission loss (MW) 2.8436 2.8834 2.9343 2.9678 3.0945
Voltage stability index (p.u.) 0.1074 0.1262 0.1264 0.1154 0.12604

Test case 5: OPF problem with the objective of RTL
minimization

Objective of this test case is formulated using Eq. (19).
Table 7 lists the optimal control variables of this
objective.

The suggested algorithm is capable of bringing
down loss to 2.8423 MW, which is lower than that
obtained using QOTLBO, TLBO, MOHS, and DSA
in the literature. In addition, the result obtained using
QRSOS is 1.42% lower than the previous best result
of 2.8834 MW [21]. For this case, QRSOS took less
than 35 iterations to converge, which is lower than that
observed in [21] as depicted in Figure 7. Figure 7. Convergence characteristic of Test case 5.
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Table 8. Comparative study of Test case 6.

Control variables QRSOS QOTLBO [21] TLBO [21] MOHS [25] DSA [57]

Generator real power
output (MW)

PG1 157.54 134.2408 76.788 92.6114 64.0725
PG2 40.938 61.8427 63.3618 67.5094 67.5711
PG5 15 15 45.7092 48.8891 50
PG8 10 10 33.8121 34.8663 35
PG11 29.994 29.9687 29.9842 29.7139 30
PG13 39.965 39.6304 37.4921 14.134 40

Generator output
voltage (p.u.)

VG1 1.0705 1.0832 1.0601 1.0993 1.06
VG2 1.0444 1.0666 1.0463 1.0986 1.0549
VG5 0.9894 1.0426 1.043 1.0973 1.0316
VG8 1.0603 1.0389 1.0443 1.0998 1.0399
VG11 1.1 1.0938 1.0986 1.0984 1.0778
VG13 0.9695 1.0976 1.0926 1.0996 1.0709

Shunt compensator
injection (p.u.)

QC10 0.0499 0.0492 0.0463 0.0499 0.0393
QC12 0.0499 0.0499 0.0487 0.0492 0.05
QC15 0.0498 0.0369 0.0497 0.0496 0.05
QC17 0.05 0.05 0.0426 0.0499 0.05
QC20 0.0499 0.0187 0.0437 0.05 0.05
QC21 0.05 0.0042 0.0434 0.0497 0.05
QC23 0.0485 0.0009 0.0193 0.0494 0.0406
QC24 0.0499 0.0005 0.0051 0.0494 0.05
QC29 0.0178 0.0011 0.0406 0.0496 0.0286

Transformer tap
ratio

T6-9 1.0999 0.9288 0.9646 0.9027 0.9989
T6-10 1.0985 0.9 0.9602 0.9001 1.0046
T4-12 1.1 0.9442 0.92 0.9036 1.0368
T28-27 0.9002 0.9082 0.9256 0.9011 0.9792

Cost ($/h) 843.8153 844.1237 912.5914 895.6223 944.4086
Transmission Loss (MW) 10.0412 7.2826 3.7474 4.3244 3.24373
L-index (p.u.) 0.092613 0.0994 0.1003 0.1006 0.12734

Test case 6: OPF for L-index minimization
This case considers lowering L-index value to improve
voltage stability of the system using Eq. (20). Control
parameters of this case are listed in Table 8.

It can be observed that the proposed methodology
lowers the value of this objective function to 0.092613
p.u., which is the lowest of those obtained using
QOTLBO, TLBO, MOHS, and DSA. In addition, it
lowered the L-index value by 6.82% from the previous
best-reported value of 0.0994 p.u. [21]. Figure 8 shows
a quicker rate of convergence for this case, too.

Test case 7: Voltage Deviation (VD) minimization
This test case considers improving the load voltage
pro�le of the system using Eq. (21). Optimal control
parameters attained for this case are listed in Table 9. Figure 8. Convergence characteristic of Test case 6.



1676 A. Saha et al./Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 1664{1689

Table 9. Comparative study of Test case 5.

Control variables QRSOS NSGA-II [23]

Generator real power
output (MW)

PG1 0.5247 �
PG2 0.8 �
PG5 0.5 �
PG8 0.35 �
PG11 0.2978 �
PG13 0.4 �

Generator output
voltage (p.u.)

VG1 1.0009 1.03
VG2 1.0016 1.03
VG5 1.0179 1
VG8 1.0084 1
VG11 0.9767 1.02
VG13 1.0059 1.04

Shunt compensator
injection (p.u.)

QC10 0.9897 �
QC12 0.9697 �
QC15 0.9855 �
QC17 0.9758 �
QC20 0.0021 �
QC21 0.027 �
QC23 0.0499 �
QC24 0 �
QC29 0.05 �

Transformer tap
ratio

T6-9 0.0448 1
T6-10 0.049 1.01
T4-12 0.0499 1
T28-27 0.0341 1.04

Voltage deviation (p.u.) 0.0798 0.38
Transmission loss (MW) 3.8676 5.3513

QRSOS lowered the VD value to 0.079866 p.u.
by a high margin of 78.98% as compared to NSGA-II
in [23]. The transmission loss is also reduced to a great
extent. The algorithm converged within 25 iterations
for this test case as observed in Figure 9.

5.2.2. Single-objective optimization for IEEE 118 bus
test system

To check the competence of the o�ered algorithm in a
large system, IEEE 118 bus test system is taken into
consideration for studying di�erent test cases. Data
of the system are obtained from [58]. Penalty factors
have been assigned to the objectives as per Eq. (14) to
handle the possible constraint violations of this large
system. The penalty factors are considered in the range Figure 9. Convergence characteristic of Test case 7.
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Figure 10. Convergence characteristic of Test case 8
obtained using QRSOS.

of [10000 100000], and tuning has been done in steps
of 10000. Results of all penalty factors are not shown
here for page limitations. Optimum results have been
obtained for a penalty factor of 30000 assigned to the
objectives, which are tabulated in the subsequent test
cases:

Test case 8: OPF problem for QFC minimization
Optimal results are obtained for a penalty factor of
30000 assigned to the objective. The results and their
comparisons are provided in Table 10.

As can be observed from Table 10, QRSOS
e�ectively reduced the fuel cost by a large margin of
14.30% from 55,968.14 $/hr [21] to 47,960 $/hr. In ad-
dition, it e�ectively reduced the emission from 410.9816
lb/hr [21] to a much lower value of 342.635 lb/hr
in the case of single-objective optimization itself. It
achieved better results than those of QOTLBO and
TLBO in [21]. The proposed algorithm showed rapid
convergence in less than 20 iterations, as seen in
Figure 10.

Test case 9: OPF problem for real power transmission
loss minimization
This test case minimized the real power loss occurring
during transmission using Eq. (18). A penalty factor of
30000 assigned to the loss minimization objective gave
optimum results, which are listed in Table 11.

QRSOS is pro�cient in reducing the transmission
loss to 16.27 MW, nearly half of that of 35.3191 MW
and 36.8482 MW obtained respectively by QOTLBO
and TLBO, as reported in [21]. Simultaneously, it
is also able to reduce the emission by 6.5127 lb/hr
compared to that obtained by QOTLBO. Figure 11
shows rapid convergence in less than 20 iterations.

Test case 10: OPF problem for minimizing L-index
L-index of large IEEE 118 bus has been considered
to improve voltage pro�le using Eq. (19). Since it
is very di�cult to maintain the voltage stability in

Figure 11. Convergence characteristic of Test case 9.

Figure 12. Convergence characteristic of Test case 10.

case of a large system, a penalty factor of 30000 has
been assigned to the objective to handle inequality
constraints. Optimum control parameters obtained for
this test case are listed in Table 12.

Optimal value of VSI is obtained as 0.0433 p.u.,
which denotes a stable system. Figure 12 shows the
convergence characteristic of Test case 10. Convergence
is achieved in less than 15 iterations.

Test case 11: OPF problem for emission minimization
objective
This test case considers minimizing emission of pollu-
tants to the atmosphere. The objective is formulated
using Eq. (21). A penalty factor of 30000 assigned to
the objective provided optimal results while e�ectively
handling the constraints. Optimal parameters of this
test case are listed in Table 13.

QRSOS provided the lowest emission value when
compared to those obtained using QOTLBO and
TLBO. It e�ectively reduced the emission from
176.1666 lb/hr in [21] to 164.5 lb/hr, i.e., by a margin
of 6.62%. In addition, it reduced the fuel cost by
3.29% from 65,601.64 $/hr [21] and transmission loss
by 7.58% from the previously reported best value of
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Table 10. Comparative study of Test case 8.
Control variables QRSOS QOTLBO [21] TLBO [21] Control variables QRSOS QOTLBO [21] TLBO [21]
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PG1 29 5.0513 5.0374
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t
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(p
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.)

VG26 1.0278 1.0596 1.0518
PG4 5 5.0223 5.0318 VG27 1.0825 1.0512 1.0406
PG6 5.0254 5.0187 5.1436 VG31 1.0494 1.0575 1.049
PG8 150.01 150.3032 150.7002 VG32 1.0588 1.0394 1.0329
PG10 100.06 169.3889 171.3829 VG34 0.9608 1.0389 1.03
PG12 10.001 10.0213 10.0116 VG36 0.9537 1.0323 1.0271
PG15 25.055 25.2916 25.1637 VG40 0.9163 1.0366 1.0374
PG18 5.0034 5.0674.0 5 VG42 0.937 1.0291 1.0417
PG19 5.0016 5 5.0182 VG46 1.0096 1.0412 1.0551
PG24 100.01 120.1963 120.4126 VG49 0.9627 1.0237 1.0453
PG25 349.91 349.5982 349.7829 VG54 0.9388 1.0197 1.0424
PG26 8.0025 8.0623 8.0728 VG55 0.9347 1.0206 1.0431
PG27 9.6979 8.0846 8.1045 VG56 0.9368 1.0241 1.046
PG31 25.003 25.0722 25.1863 VG59 0.9439 1.0309 1.0533
PG32 8.0045 8.0192 8.1232 VG61 1.01 1.0288 1.0513
PG34 99.985 25.1262 25.1527 VG62 0.999 1.0699 1.0696
PG36 8.0117 8.0206 8.0528 VG65 1.0506 1.0431 1.061
PG40 8.0038 8.0448 8.2236 VG66 0.9829 1.038 1.0362
PG42 25.325 25.0537 25.3548 VG69 0.9426 1.053 1.0525
PG46 50.015 249.6018 249.0325 VG70 0.9884 1.0572 1.0542
PG49 50.514 249.9137 248.1637 VG72 1.0406 1.042 1.0399
PG54 25 25.2048 25.1607 VG73 1.0245 1.0243 1.0217
PG55 25 25.0768 25.4524 VG74 0.9591 1.0194 1.0163
PG56 50.004 199.9312 198.7935 VG76 0.9568 1.0327 1.0271
PG59 50 199.7859 199.8001 VG77 1.009 1.0423 1.0343
PG61 25.002 25.042 25.5916 VG80 1.0496 1.0886 1.0892
PG62 100.01 327.0837 326.3556 VG85 1.0316 1.0199 1.02
PG65 420 319.6931 314.8521 VG87 1.0619 1.0897 1.0898
PG66 30.043 30.1746 30.2394 VG89 1.0423 1.0366 1.0266
PG69 29 110.9331 115.4795 VG90 1.0231 1.0305 1.0185
PG70 10.003 10.0207 10.2128 VG91 1.0311 1.0363 1.0256
PG72 5.0124 5.0423 5.1262 VG92 1.0348 1.0386 1.0286
PG73 5 5.0288 5.0132 VG99 0.9697 1.0545 1.0456
PG74 25.003 25.3524 25.1628 VG100 0.9993 1.0402 1.0296
PG76 25.125 25.0485 25.1246 VG103 0.9971 1.0346 1.023
PG77 299.95 150.3722 150.6738 VG104 1.0084 1.0297 1.019
PG80 25.054 25.0812 25.0102 VG105 1.0113 1.0278 1.0161
PG85 10.002 10.0242 10.1632 VG107 1.0315 1.0215 1.0087
PG87 100.04 183.8538 183.7419 VG110 0.97 1.0346 1.0243
PG89 50.084 97.2006 95.8227 VG111 0.981 1.0411 1.0298
PG90 8.0001 8 8.0211 VG112 0.9261 1.0345 1.0256
PG91 47.302 20.0123 20.1013 VG113 0.9519 1.0615 1.0501
PG92 214.8 103.6475 104.3625 VG116 1.1 1.0679 1.0677
PG99 100 100.0325 100.1091

S
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(p
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QC34 0.0901 0.0663 0.2668
PG100 100.05 114.7707 113.6624 QC44 0.2995 0.0516 0.0507
PG103 8.0138 8.0188 8.0586 QC45 0.1203 0.2169 0.2236
PG104 25.084 25.0423 25.3061 QC46 0.2285 0.0086 0.2494
PG105 25.001 25.2536 25.1527 QC48 0.2964 0.0846 0.081
PG107 8.0026 8.0091 8.0143 QC74 0.2678 0.1156 0.1583
PG110 25 25.0222 25.2862 QC79 3.13E-06 0.2996 0.298
PG111 25.123 25.0547 25.0384 QC82 0.2927 0.2997 0.2998
PG112 25.368 25.0117 25.2232 QC83 0.0176 0.0979 0.1099
PG113 25.003 25.1642 25.2035 QC105 0.2996 0.0989 0.1729
PG116 25.001 25.0107 25.0643 QC107 0.1983 0.1616 0.0879

G
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VG1 1.083 1.0607 1.0496 QC110 0.1892 0.1008 0.1388
VG4 0.9625 1.0546 1.0413

T
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ta

p
ra

ti
o

T8-5 0.9369 1.0042 1.0121
VG6 0.9661 1.0857 1.0841 T26-25 1.0599 1.0999 1.0998
VG8 0.9945 1.0895 1.09 T30-17 1.0922 1.0182 1.0275
VG10 1.1 1.0524 1.0419 T38-37 1.0731 1.0265 1.0315
VG12 0.9735 1.0467 1.0352 T63-59 1.0534 1.0378 1.0159
VG15 0.9531 1.0505 1.0385 T64-61 0.9342 1.0311 1.0086
VG18 0.9384 1.0452 1.0343 T65-66 1.0379 0.9002 0.9
VG19 0.9459 1.0712 1.0658 T68-69 0.9 0.9961 0.9945
VG24 1.0839 1.09 1.0897 T81-80 0.9 1.0042 1.0113
VG25 1.0419 1.09 1.0896 Fuel cost ($/hr) 47,960 55,968.14 55,989.87

Emission (lb/hr) 342.635 410.9816 410.5538
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Table 11. Comparative study of Test case 9.
Control variables QRSOS QOTLBO [21] TLBO [21] Control variables QRSOS QOTLBO [21] TLBO [21]
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PG1 29.728 29.8931 14.1548
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(p
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VG27 0.9477 1.0344 0.9982
PG4 17.57 20.7667 23.0473 VG31 0.9472 1.0399 0.9874
PG6 5.0015 23.5384 25.2495 VG32 0.9476 1.0247 1.0123
PG8 150 160.8306 161.4631 VG34 0.9713 1.025 1.0166
PG10 298.92 105.1021 202.4847 VG36 0.9653 1.0138 1.0136
PG12 10.387 29.1323 29.1093 VG40 0.9586 1.0387 1.0146
PG15 41.455 87.5141 94.3115 VG42 0.9713 1.0371 1.0554
PG18 5.8168 8.1933 23.9002 VG46 0.99 1.0337 1.0439
PG19 5 23.0788 15.1346 VG49 0.9874 1.039 1.0544
PG24 100.01 147.7714 113.9182 VG54 0.9954 1.0454 1.0525
PG25 100.09 126.8438 100.3799 VG55 0.9932 1.0399 1.0529
PG26 8.0177 22.9912 22.1332 VG56 0.9933 1.0382 1.0199
PG27 8.0197 28.5314 27.1458 VG59 0.9635 1.0544 1.0123
PG31 54.483 78.2105 87.9738 VG61 1.0046 1.0527 1.008
PG32 18.793 20.1445 29.6566 VG62 0.9987 1.0538 1.0512
PG34 43.155 83.2007 78.1281 VG65 1.0354 1.0462 1.027
PG36 29.929 24.6842 28.9505 VG66 0.9854 1.0162 1.0134
PG40 29.853 20.4124 29.0852 VG69 1.0152 1.0277 1.0175
PG42 99.967 94.9384 87.2005 VG70 1.0413 1.0367 1.0061
PG46 75.876 58.6024 127.8746 VG72 1.0281 1.0244 1.0065
PG49 173.17 236.2374 93.3376 VG73 1.0693 1.0039 1.0032
PG54 99.992 80.436 59.2742 VG74 1.0232 1.0077 1.0056
PG55 68.862 97.7809 71.2112 VG76 1.0049 1.0107 0.989
PG56 168.52 77.1155 136.8644 VG77 1.0061 1.0191 1.0036
PG59 199.99 179.9903 97.9237 VG80 0.9958 1.0069 0.9844
PG61 25.004 76.5748 58.1055 VG85 1.0382 1.0126 1.0103
PG62 100 185.5016 336.6485 VG87 1.0998 1.0818 1.0797
PG65 419.48 192.6547 142.6236 VG89 1.0539 1.0387 1.0511
PG66 30.345 78.8729 79.8481 VG90 1.0393 1.0382 1.0438
PG69 29.728 80.0818 95.1218 VG91 1.038 1.0407 1.0497
PG70 29.898 10.9715 10.1947 VG92 1.0418 1.0357 1.0369
PG72 5.001 20.1172 19.8263 VG99 0.9898 1.0393 1.051
PG73 18.818 19.9734 10.6108 VG100 0.9915 1.0273 1.043
PG74 99.348 89.9006 97.7145 VG103 0.9894 1.0193 1.0661
PG76 99.571 88.5942 31.0182 VG104 0.9818 1.0113 1.0361
PG77 274.26 227.4576 185.5746 VG105 0.9876 1.0094 1.0323
PG80 100 30.4116 44.2247 VG107 0.968 1.0078 1.0318
PG85 26.926 14.0215 11.3845 VG110 1.0205 1.0155 1.0311
PG87 100.32 100.1543 107.1638 VG111 1.0208 1.0198 1.0368
PG89 50.911 57.9964 61.6745 VG112 1.0421 1.0219 1.0349
PG90 19.989 12.4839 10.6637 VG113 0.9515 1.0347 1.0207
PG91 44.355 24.0536 23.5206 VG116 1.0138 1.0505 1.072
PG92 273.51 100.3382 115.7448
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QC34 0.2718 0.117 0.105
PG99 100.04 105.0007 119.2147 QC44 0.0036 0.0404 0.0019
PG100 100.07 107.3321 105.7234 QC45 0.2997 0.2089 0.2249
PG103 12.4 11.9027 8.1071 QC46 0.2272 0.274 0.1187
PG104 25 27.5847 40.6412 QC48 0.0053 0.0744 0.0558
PG105 99.627 28.8382 45.4382 QC74 0.1768 0.0844 0.1757
PG107 11.383 13.3147 18.1017 QC79 0.231 0.2919 0.2922
PG110 50 31.3725 29.1604 QC82 0.0235 0.2949 0.245
PG111 25 25.2184 25.2835 QC83 0.1119 0.0931 0.1293
PG112 74.902 35.8435 31.7249 QC105 0.0027 0.155 0.1657
PG113 59.328 56.6809 80.6904 QC107 0.298 0.1093 0.0988
PG116 49.523 49.2005 44.257 QC110 0.0087 0.0965 0.0926
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VG1 0.9809 1.051 1.0202
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o

T8-5 0.9484 0.9941 1.0113
VG4 1.005 1.0434 1.0214 T26-25 1.0418 0.9026 1.0515
VG6 0.9951 1.0701 1.0499 T30-17 0.9649 1.0364 1.0292
VG8 0.9735 1.0755 1.0557 T38-37 1.0303 1.0087 1.0112
VG10 1.0416 1.0367 1.0148 T63-59 1.0664 1.0081 1.0128
VG12 0.9824 1.0221 1.0188 T64-61 0.9674 0.9929 1.0674
VG15 0.955 1.0265 1.0159 T65-66 1.0576 0.9045 1.0588
VG18 0.9431 1.0181 1.0133 T68-69 0.9682 0.9881 1.033
VG19 0.9461 1.0468 1.0063 T81-80 0.9884 1.0138 1.0538
VG24 1.0096 1.0541 1.0088 Fuel cost ($/hr) 70,963 63,693.91 63,515.12
VG25 0.9889 1.0897 1.0756 Emission (lb/hr) 373.2768 379.7895 318.0176
VG26 0.9686 1.0413 0.994 Transmission loss (MW) 16.27 35.3191� 36.8482

�The unit of the result obtained using QOTLBO for loss minimization in [21] is given as kW, whereas the real value comes as
35.3191 MW after calculation using the parameters provided by the authors.
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Table 12. Optimal parameter settings for Test case 10.
Control variables QRSOS Control variables QRSOS Control variables QRSOS
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PG1 29.977
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PG100 133.29
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e

(p
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.)

VG76 0.985
PG4 24.303 PG103 19.349 VG77 1.0591
PG6 13.342 PG104 87.283 VG80 1.083
PG8 227.14 PG105 82.227 VG85 0.989
PG10 169.09 PG107 11.192 VG87 0.9
PG12 24.426 PG110 50 VG89 1.0385
PG15 69.884 PG111 99.971 VG90 1.0265
PG18 17.269 PG112 99.699 VG91 1.0421
PG19 22.526 PG113 25.099 VG92 1.0391
PG24 100.01 PG116 37.44 VG99 0.9857
PG25 100.03

G
en
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t
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e

(p
.u

.)
VG1 0.9859 VG100 1.0148

PG26 17.521 VG4 1.0128 VG103 1.0162
PG27 8 VG6 1.0283 VG104 1.0262
PG31 83.334 VG8 1.005 VG105 1.0343
PG32 11.171 VG10 1.1 VG107 1.088
PG34 25 VG12 1.0256 VG110 1.0014
PG36 8.3366 VG15 1.0251 VG111 0.983
PG40 29.907 VG18 1.0362 VG112 1.0011
PG42 95.503 VG19 1.0185 VG113 1.0364
PG46 146.37 VG24 0.9331 VG116 1.0147
PG49 249.95 VG25 1.0085

S
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io
n

(p
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QC34 0.1929
PG54 97.799 VG26 1.0144 QC44 0.3
PG55 72.019 VG27 0.9639 QC45 0.3
PG56 199.95 VG31 0.9814 QC46 0.2573
PG59 75.556 VG32 0.9754 QC48 0.0075
PG61 35.641 VG34 0.9809 QC74 0.1588
PG62 177 VG36 0.9769 QC79 0.2771
PG65 412.18 VG40 0.9 QC82 0.2923
PG66 139.44 VG42 1.0999 QC83 0.0084
PG69 29.977 VG46 1.1 QC105 0.2824
PG70 16.165 VG49 1.0782 QC107 0.0997
PG72 12.618 VG54 0.9683 QC110 0.1069
PG73 12.863 VG55 0.978

T
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o

T8-5 0.9364
PG74 42.698 VG56 0.9785 T26-25 1.0443
PG76 26.457 VG59 1.0104 T30-17 0.9246
PG77 210.27 VG61 0.9983 T38-37 1.1
PG80 28.485 VG62 1.0093 T63-59 0.9553
PG85 25.111 VG65 1.0592 T64-61 1.0221
PG87 178.32 VG66 1.025 T65-66 1.0498
PG89 83.092 VG69 1.0341 T68-69 0.9643
PG90 19.851 VG70 0.9909 T81-80 0.9555
PG91 49.548 VG72 0.9385 Fuel cost ($/hr) 72,309
PG92 204.51 VG73 0.9767 Transmission loss (MW) 103.81
PG99 108.94 VG74 0.9908 L-index (p.u.) 0.0433

150.9366 MW [21], simultaneously. Figure 13 shows
the convergence for this case.

5.2.3. Bi-objective results for IEEE 30 bus test system
Nine di�erent case studies have been carried out on the
IEEE 30 bus test system for diverse MOO functions,
and their pareto-fronts have been studied.

A Pareto optimal solution is de�ned as the �nest
solution set selected from numerous solution sets in
which all objectives are equally compromised with
respect to one another. Each solution set is de�ned as
a non-dominated solution set. There can be an in�nite
number of Pareto solution sets for a multi-objective
optimization problem. Figure 13. Convergence characteristic of Test case 11.
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Table 13. Comparative study of Test case 11 for QRSOS.
Control variables QRSOS QOTLBO[21] TLBO[21] Control variables QRSOS QOTLBO[21] TLBO[21]
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PG1 29 30 13.1937
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VG27 1.0882 1.0272 1.0426
PG4 11.361 29.9302 28.7162 VG31 1.0442 1.0338 1.0469
PG6 29.983 29.8782 18.4882 VG32 1.0657 1.0395 1.0453
PG8 150 299.8738 270.3844 VG34 0.9849 1.0375 1.0397
PG10 100.64 142.7617 264.8307 VG36 0.978 1.0249 1.0496
PG12 29.714 22.0728 29.1476 VG40 0.9348 1.0278 1.0571
PG15 91.021 44.0345 35.9218 VG42 0.9203 1.037 1.0694
PG18 5 5 5 VG46 0.9708 1.0373 1.0714
PG19 5 5.0111 5 VG49 0.9947 0.9948 1.0702
PG24 100 100.4435 100.4172 VG54 0.9451 1.049 1.0877
PG25 100 100.4082 100 VG55 0.9471 1.0261 1.0736
PG26 8.1201 26.9576 29.3547 VG56 0.9471 1.0526 1.0845
PG27 8.7412 12.112 28.2438 VG59 0.9598 1.0403 1.0883
PG31 67.54 97.9324 83.8513 VG61 1.012 1.031 1.0674
PG32 8 8.0141 8.0142 VG62 1.0163 1.0648 1.0663
PG34 25 25.0213 25.0202 VG65 1.0287 1.0456 1.0851
PG36 8 8 8.0134 VG66 0.9994 1.0304 1.0203
PG40 8 8 8.0283 VG69 0.9454 1.039 1.0349
PG42 32.46 99.6537 26.8744 VG70 0.9681 1.0406 1.042
PG46 249.95 179.4485 126.7132 VG72 1.053 1.0333 1.0233
PG49 50 50.0503 50.0483 VG73 1.0027 1.0143 1.0106
PG54 25 25.0728 25.1737 VG74 0.9424 1.0193 1.0072
PG55 25 25.0137 25.4218 VG76 0.951 1.0386 1.0291
PG56 50 50.0234 50.3506 VG77 1.0113 1.0629 1.0351
PG59 199.99 123.5961 132.1043 VG80 1.0464 1.0899 1.0842
PG61 38.07 84.2513 33.5485 VG85 1.0087 1.0146 1.0199
PG62 420 173.6788 254.15 VG87 1.063 1.0898 1.0871
PG65 80 80 80 VG89 1.0419 1.0428 1.0291
PG66 30 30.331 32.3293 VG90 1.0971 1.0415 1.0244
PG69 29 80.0753 107.9949 VG91 1.0322 1.0524 1.0381
PG70 10 10.2342 10.1963 VG92 1.0337 1.0537 1.0424
PG72 5 5.4008 10.5836 VG99 0.9764 1.0281 1.0883
PG73 5 5.6437 5.3809 VG100 1.0075 1.0706 1.0706
PG74 25 27.8556 25.5065 VG103 1.0086 1.0791 1.0743
PG76 25 27.6722 30.1247 VG104 1.0215 1.0631 1.043
PG77 240.34 272.0213 237.3293 VG105 1.0206 1.062 1.0447
PG80 84.397 70.0576 63.4527 VG107 1.0566 1.0513 1.0255
PG85 13.542 28.1374 19.2557 VG110 0.9757 1.0824 1.0256
PG87 179.01 181.63 299.4339 VG111 1.0213 1.0798 1.0492
PG89 113.86 144.6645 155.9003 VG112 0.9107 1.0865 1.0417
PG90 15.976 16.9528 19.6379 VG113 0.9662 1.0522 1.053
PG91 45.96 44.9324 41.5361 VG116 1.0521 1.0805 1.0739
PG92 196.58 147.4587 114.5003
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QC34 0.2999 0.1784 0.29
PG99 265.61 172 131.9728 QC44 0.1811 0.0462 0.0421
PG100 246.91 213.1142 175.3218 QC45 0.1032 0.2032 0.1844
PG103 11.754 19.4834 15.8526 QC46 0.0029 0.057 0.0233
PG104 74.106 80.2192 95.8003 QC48 0.0438 0.0766 0.0679
PG105 67.72 73.9628 83.2438 QC74 0.1116 0.1794 0.2857
PG107 14.257 19.7113 18.4581 QC79 0.0336 0.2993 0.297
PG110 48.915 48.6485 46.4433 QC82 0.3 0.2925 0.0962
PG111 31.689 85.3081 99.9002 QC83 1.57E-06 0.2999 0.287
PG112 83.836 83.2133 90.2355 QC105 0.0627 0.0487 0.197
PG113 33.722 67.1145 95.4081 QC107 0.1428 0.2225 0.2103
PG116 34.93 41.9238 29.7641 QC110 0.0007 0.0043 0.1421
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VG1 1.0597 1.0327 1.0191
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T8-5 0.987 1.0119 1.017
VG4 0.9347 1.0254 1.0222 T26-25 0.9243 1.0989 1.0992
VG6 0.9593 1.072 1.0606 T30-17 1.0706 1.0134 1.0133
VG8 1.0014 1.0788 1.0775 T38-37 1.0145 1.0021 0.989
VG10 1.0859 1.0208 1.0258 T63-59 0.961 0.9761 1.0046
VG12 0.9831 1.0373 1.0333 T64-61 0.9181 1.0315 0.9929
VG15 0.9674 1.0342 1.0374 T65-66 1.0442 0.9612 0.9003
VG18 0.9569 1.0319 1.036 T68-69 0.9417 1.0321 1.0927
VG19 0.962 1.0449 1.0446 T81-80 0.9003 1.0116 1.0368
VG24 1.0996 1.0529 1.0583 Fuel cost ($/hr) 63,441 65,601.64 65,037.34
VG25 1.1 1.0766 1.078 Emission (lb/hr) 164.5 176.1666 182.9609
VG26 1.0156 1.0319 1.0311 Transmission loss (MW) 139.49 150.9366 188.5034
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Test case 12: OPF problem for simultaneously
minimizing QFC and RTL
This objective function is described using Eq. (23), and
results are presented in Table 14. The comparative
study, as depicted in Table 15, showed that the algo-
rithm achieved better result than those obtained using

MO-DEA, QOTLBO, TLBO, MOHS, and NSGA-II
in the literature. Compared to MO-DEA, QRSOS
lowered the transmission loss from 5.5949 MW [64] by
1.69% to 5.5002 MW. However, at the same time, the
total FC increased by a small margin of 0.071%. It
was observed that VSI value improved simultaneously,

Table 14. Optimum control variable settings for di�erent test cases for bi-objective functions.

Control variables Case12 Case13 Case14 Case15 Case16 Case17 Case18 Case19 Case20
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W

)

PG1 1.2849 1.9356 2.1982 1.7688 1.9456 2.1981 1.7658 1.9249 2.1903

PG2 0.517 0.4513 0.2756 0.4873 0.4899 0.2842 0.4895 0.4677 0.2861

PG5 0.2967 0.2067 0.1609 0.2138 0.1862 0.1557 0.2154 0.1986 0.1688

PG8 0.35 0.1183 0.1 0.2114 0.1 0.1 0.2218 0.1425 0.1

PG11 0.2448 0.1 0.1 0.1186 0.1 0.0974 0.1191 0.1 0.1246

PG13 0.1958 0.12 0.1202 0.12 0.12 0.12 0.12 0.12 0.098
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VG1 1.1 1.1 1.081 1.1 1.1 1.0813 1.0485 1.0186 1.029

VG2 1.0904 1.0824 1.05 1.0873 1.0791 1.05 1.0289 1.0047 1.0282

VG5 1.0673 1.0566 1.0233 1.0615 1.0632 1.0234 1.0062 1.0181 1.0191

VG8 1.0773 1.064 1.0316 1.069 1.0562 1.0316 1.0049 1.0093 0.9959

VG11 1.0813 1.0926 1.0985 1.0768 1.1 1.1 0.9857 1.0001 1.0593

VG13 1.1 1.1 1.05 1.1 1.0582 1.05 0.9859 0.9976 1.0219
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QC10 0.0125 0.0125 | 0.05 0.05 | 0.05 0.0023 |

QC12 0.0498 0.05 | 0.05 0.0427 | 0 0.0346 |

QC15 0.05 0.0499 | 0.05 0.0446 | 0.05 0.05 |

QC17 0.05 0.05 | 0.05 0.0367 | 0 0 |

QC20 0.0429 0.0442 | 0.05 0.0066 | 0.05 0.05 |

QC21 0.05 0.0499 | 0.0499 0.0447 | 0.0294 0.0434 |

QC23 0.0183 0.022 | 0.0223 0.0233 | 0.045 0.0469 |

QC24 0.0383 0.0402 | 0.0427 0.0144 | 0.05 0.05 |

QC29 0.0234 0.0243 | 0.0201 0 | 0.02 0.0345 |

T
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sf
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m
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ra

ti
o T6-9 1.0102 1.0772 1.0997 1.0429 1.0368 1.1 1.002 1.0145 1.086

T6-10 0.9812 0.9032 0.9168 0.9493 1.0976 0.9127 0.9889 0.9712 0.9

T4-12 0.9756 0.9677 0.987 0.9712 1.0997 0.9832 0.9439 0.9652 0.9586

T27-28 0.9645 0.9579 0.9625 0.9574 0.9038 0.9572 0.968 0.9804 0.9419

Fuel cost ($/hr) 821.4655 833.3756825.2938799.0175835.2983825.4182803.3138842.5288832.7439

Real power loss (MW) 5.5002 9.7887 12.0904 8.7768 10.7703 12.1405 10.0139 11.97 4 13.3898

Voltage stability index (p.u.) 0.1185 0.1081 0.129 0.1067 0.1072 0.1277 0.1446 11.974 0.135

Voltage deviation (p.u.) 1.6125 1.9877 0.5796 1.5026 0.9079 0.6268 0.0991 0.0832 0.1461

Simulation time (s) 59.6103 62.566 72.4231 52.352 68.203 76.5432 59.246 63.2024 61.0255

Table 15. Comparative study of Test case 12.

Technique Fuel cost
($/hr)

Real power loss
(MW)

Voltage stability index
(p.u.)

MOHS [25] 832.6709 5.3143 NA
NSGA-II [23] 823.8875 5.7699 NA
TLBO [21] 828.5300 5.2883 0.1259
QOTLBO [21] 826.4954 5.2727 0.1255
MO-DEA [64] 820.8802 5.5949 NA
QRSOS 821.4655 5.5002 0.1185
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Figure 14. Pareto front for Test case 12.

thereby increasing the voltage stability margin. Fig-
ure 14 depicts the Pareto-front obtained for the above
objective.

Test case 13: OPF for simultaneously minimizing FC
and RTL considering VE
Generator cost coe�cients provided in Table 1 of [28]
are used for this objective described using Eq. (24).
Results are presented in Table 14. The total FC
attained using QRSOS is 833.3756 $/hr, which is 0.98%
higher than that of Case 2.1, and the RTL is 9.7887
MW, which is 19.16% lower than that of Case 2.1.
Figure 15 represents the Pareto front obtained for
Test case 13. No existing results are available in the
literature for doing comparative study.

Test case 14: OPF for minimizing FC along with
RTL considering both VE and POZ
Generator cost coe�cients and the POZs, as provided
in Table 1 of Ref. [28], are used in Eq. (24). Based
on Table 14, it can be witnessed that total FC is
825.2938 $/hr and the RTL is 12.0904 MW. The total
FC increased with a slight margin of 0.002% and RTL
reduced by 0.18% when compared to single-objective
minimization of Test case 4. Figure 16 represents the
Pareto-front for this test case. No existing results are
available in the literature for doing comparative study.

Figure 15. Pareto front for Test case 13.

Figure 16. Pareto front for Test case 14.

Test case 15: OPF for simultaneously minimizing
QFC and L-index neglecting VE and POZ
This objective function is described using Eq. (25).
Table 14 demonstrates results obtained for this bi-
objective function. According to Table 16, QRSOS
reduced the total QFC to 799.0175 $/hr, which is lower
than those obtained using QOTLBO, TLBO, NSGA-
II, and MOHS, and recently applied BSA and MO-
DEA in the literature. Based on the comparison of
the result with those of the latest algorithms such as
BSA [63] and MO-DEA [64], it is observed that QRSOS

Table 16. Comparative study of Test case 15.

Technique Fuel cost
($/hr)

Real power loss
(p.u.)

Voltage stability index
(p.u.)

Voltage deviation
(p.u.)

MOHS [25] 799.9401 NA 0.1075 NA
NSGA-II [23] 800.3170 NA 0.1083 NA
TLBO [21] 799.8564 8.8592 0.1270 NA
QOTLBO [21] 799.3415 8.7050 0.1256 NA
BSA [63] 800.3340 8.4904 0.1259 1.9855
MO-DEA [64] 799.6912 8.602 0.1249 2.0498
QRSOS 799.0175 8.7768 0.1067 1.5026
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Figure 17. Pareto front for Test case 15.

Figure 18. Pareto front for Test case 16.

lowers the QFC value by 0.0803%. Simultaneously,
it can lower the VSI value to 0.1067 p.u. by 15.25%
from the latest MO-DEA [64], thereby ensuring a stable
system. Figure 17 represents the Pareto front for this
bi-objective function.

Test case 16: OPF for simultaneously minimizing FC
and VSI considering VE
Generator cost coe�cients as provided in Table 1
of [28] are used for this case described by Eq. (26).
Results attained for this test case are tabulated in
Table 14. Figure 18 shows the Pareto-front for this
objective function. Overall, the FC for this bi-objective
function came out to be 835.2938 $/hr and the VSI
as 0.1072 p.u. The FC increased by a negligible
margin of 1.21% and the VSI reduced by 17.70% when
compared to single-objective minimization of Test case

Figure 19. Pareto front for Test case 17 obtained using
QRSOS.

2.1. No existing results are available in the literature
for comparison.

Test case 17: OPF for simultaneously minimizing FC
and VSI considering VE and POZ
Generator cost coe�cients and POZs as provided in
Table 1 of [28] are used for test case described by
Eq. (26). Results obtained for this test case are
demonstrated in Table 14. QRSOS achieved FC of
825.4182 $/hr and VSI of 0.1277 p.u. The total FC
increased by a negligible margin of 0.017%, whereas the
VSI improved by a margin of 1.08% when compared to
single-objective minimization of Test case 4. Figure 19
represents the Pareto-front for this case. No existing
results are available in the literature for comparison.

Test case 18: OPF for minimizing QFC along with
VD
This objective function is de�ned using Eq. (27).
Results obtained for this test case are demonstrated
in Table 14. VD obtained using QRSOS is 0.0991 p.u.
which is 94.09% lower, and the total FC is 803.3138
$/hr which is 0.55% higher when compared to single-
objective minimization of Test case 1. In addition,
when compared to the recently applied techniques, such
as BSA [63] and MO-DEA [64], it is observed from
Table 17 that QRSOS lowers the FC as well as VD by
0.074% and 14.42%, respectively. Figure 20 depicts the
Pareto front for this test case.

Test case 19: OPF to minimize FC along with VD
considering VE
Generator cost coe�cients from Table 1 of [28] are

Table 17. Comparative study of Test case 18.

Technique Fuel cost ($/hr) Voltage deviation (p.u.)

BSA [63] 803.4294 0.1147
MO-DEA [64] 803.9116 0.1158

QRSOS 803.3138 0.0991
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Figure 20. Pareto front for Test case 18.

Figure 21. Pareto front for Test case 19.

used for the case described using Eq. (28). Results
obtained for this test case are demonstrated in Table
14. The total FC achieved using QRSOS is 842.5288
$/hr, which is 2.05% higher than that in Test case 2.1,
and VD is achieved as 0.0832 p.u., which is 85.41% less
than that obtained for single-objective minimization of
Test case 2.1. Figure 21 represents the Pareto-front
for this case. No existing results are available in the
literature for comparison.

Test case 20: OPF for minimizing FC along with VD
considering VE and POZ
Generator cost coe�cients and POZs in Table 1 of [28]
are used for the case described using Eq. (28). Results
are presented in Table 14. The total FC achieved using
QRSOS is 832.7439 $/hr, which is 0.904% higher, and
VD is achieved as 0.1461 p.u., which is 74.70% lower
when compared to the single-objective minimization
of Test case 4. Figure 22 represents the Pareto-front
for this case. No existing results are available in the
literature for carrying out a comparative study of this
case, too.

Analyses of the aforementioned case studies prove
the supremacy of the proposed technique over other

Figure 22. Pareto front for Test case 20.

algorithms such as QOTLBO, TLBO, MOHS, NSGA-
II, ABC, BSA, PSO, DE-PSO, EP, IEP, GA, IABC,
SA, SFLA, MSFLA, NLP, TS, ACO, Hybrid SFLA-
SA, and SOS available in literature for achieving an
optimum solution to the OPF problem. QRSOS pro-
duces superior solutions to other algorithms mentioned
above for the cases studied. Pareto fronts obtained for
each of the multi-objective functions depict solution
sets well distributed in the search space, signifying a
non-dominated solution.

6. Determining the best parameter settings for
QRSOS

To determine the best parameter setting for QRSOS
to deliver e�cient results, population sizes of 10, 20,
30, 40, and 50 have been taken into consideration. For
each population size, jumping rate JR is augmented
from 0.1 to 0.9 in steps of 0.1, as shown in Table 18.
Performance of QRSOS in Test case 4 is analyzed
considering all the aforementioned combinations. Fifty
di�erent trials have been carried out with 100 iterations
for each trial. Based on Table 18, it is observed that a
population size of 30 and a Jumping Rate (JR) of 0.3
give the best fuel cost value of 825.2760 $/hr, which is
less than previous best reported value of 825.3705 $/hr.

7. Statistical analysis of test results

Statistical analysis is done on 50 trial data sets to
assess the performance of QRSOS. For this purpose,
one trial data set, as obtained from the solution sets
of the proposed algorithm, is tested using Wilcoxon
Signed Rank Test (WSRT). A p-value (probability
value) below 0.05 obtained from this test is considered
as conclusive proof to counter the null hypothesis. p-
values obtained using this test for Test cases 1-4 along
with minimum, maximum, average values and standard
deviation are tabulated below.
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Table 18. Best parameter setting for QRSOS.

Population
size

Jumping Rate (JR)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10 826.5956 826.5543 826.5142 826.5492 826.6166 826.6473 826.6759 826.6921 826.7051 826.7149

20 826.4182 826.3762 826.3651 826.4960 826.6253 826.6395 826.6627 826.6863 826.7127 826.7248

30 825.5214 825.4075 825.2760 825.3153 825.3752 825.4242 825.4621 825.4875 825.5023 825.6942

40 825.5193 825.4695 825.4473 825.4752 825.4763 825.4954 825.5121 825.5274 825.5331 825.5781

50 825.5403 825.5325 825.4620 825.4854 825.4891 825.4902 825.5123 825.5179 825.5194 825.5344

Table 19. Statistical analysis of QRSOS for single objectives using Wilcoxon signed rank test against 50 trials.

Test
cases

Minimum Average Maximum No. of hits to
minimum solution

Standard
deviation

p-value

Case 1 798.9152 798.9439 799.0110 35 0.0443 1.12E-10
Case 2.1 825.2541 825.2866 825.4346 41 0.0700 3.66E-11
Case 2.2 920.1125 920.1514 920.3242 40 0.0828 5.96E-11
Case 3 801.7593 801.7668 801.8001 40 0.0160 5.96E-11
Case 4 825.2769 825.2785 825.2865 38 0.0045 6.92E-11

As observed in Table 19, p-value in every case
is well below the desired value of 0.05 establishing
statistical signi�cance of the results. Moreover, the
standard deviation values obtained for QRSOS are
much lower than those obtained by its predecessor [28]
for all the cases.

Conclusion

This study aimed to introduce a novel technique des-
ignated as quasi-reected symbiotic organisms search
algorithm (QRSOS) to solve the OPF problem. The
technique was successfully applied to the OPF problem
to solve both single-objective and bi-objective func-
tions. Twenty di�erent test cases were solved with
and without considering the VE and POZs. Outputs
obtained using QRSOS were compared with those
obtained by SOS, QOTLBO, TLBO, MOHS, NSGA-
II, DE, and PSO; several other techniques are reported
in the literature. Results obtained demonstrate the
e�ciency and robustness of the o�ered technique in
handling OPF problem for both small- and large-scale
test systems. Results showed a remarkable improve-
ment for QRSOS when compared to other available
techniques. It passed the Wilcoxon signed rank test
with very low p-values and established its statistical
signi�cance. It was simultaneously observed that this
algorithm acquired very fast convergence in all cases
when matching other techniques. Henceforth, it may
be deduced that QRSOS algorithm is promising, and
there is a possibility for future research in this direction
considering other aspects of power system.

Future scope

The proposed technique has e�ectively handled both
linear and non-linear objectives. Since QRSOS was
shown as able to solve the OPF problem successfully,
it might be further applied to solve OPF, considering
renewables and uncertainty due to load demands under
di�erent contingency scenarios.
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