Resilient network design in a location-allocation problem with multi-level facility hardening

Document Type : Article


1 Department of Industrial Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

2 Department of Industrial Engineering, Shahed University, Tehran, Iran.

3 School of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran.;Arts et Metiers ParisTech, LCFC, Metz, France.


There are many sources of risk affecting the network elements may lead to network failure, so planners need to consider them in the network design. One of the most important strategies for disruption risk management is the static resilience. In this strategy, the network functionality is maintained after the disruption event by the prevention and hardening actions. In this paper, a resilient capacitated fixed-charge location-allocation model is proposed. Both facility hardening and equipping of the network to backup facilities for disrupted elements are considered together to avoid supply network failure due to random disruption. Facilities are decided to be hardened in multiple levels before disruption events. The problem is formulated as a non-linear integer programming model, then its equivalent linear form is presented. A Lagrangian decomposition algorithm (LDA) is developed to solve large-scale instances. Computational results confirm the efficacy of the proposed solution approach comparing to classical solution approaches in large-scale problems. Moreover, the superiority of the proposed model is confirmed by comparing to the classical models.


Main Subjects

1.Amoaning, Y. A resiliency framework for planning in  state transportation agencies", Gor. Ins. Technol., pp.  1-2 (2013).  2. Azad, N., Davoudpour, H., Saharidis, G.K.D., and  Shiripour, M. A new model to mitigating random  disruption risks of facility and transportation in supply  chain network design", International Journal of Advanced  Manufacturing Technology, 69, pp. 1757-1774  (2013). 
3. Qingwei, L. and Savachkin, A. A heuristic approach  to the design of forti_ed distribution networks", Transportation  Research Part E, 50, pp. 138-148 (2013).  4. Church, R.L., Middleton, R.S., and Scaparra, M.P.  Identifying critical infrastructure: The median and  covering facility interdiction problems", Annals of the  Association of American Geographers, 94, pp. 491-502  (2004).  5. Scaparra, M.P. and Church, R.L. A bilevel mixedinteger  program for critical infrastructure protection  planning", Computer and Operations Research, 35, pp.  1905-1923 (2008).  6. Aksen, D., Necati, A., and Piyade, N. The budget  constrained r-interdiction median problem with capacity  expansion", Central European Journal of Operations  Research, 18, pp. 269-291 (2010).  7. Daskin, M., Liberatore, F., and Scaparra, M.P. Hedging  against disruptions with ripple e_ects in location  analysis", OMEGA, 40, pp. 21-30 (2012).  8. Medal, H.R., Pohl, E.A., and Rossetti, M.D. A multiobjective  integrated facility location-hardening model:  Analyzing the pre and post-disruption tradeo_", European  Journal of Operational Research, 237, pp. 257-  270 (2014).  9. Snyder, L. and Daskin, M.S. Reliability models for  facility location: the expected failure cost case",  Transportation Science, 39, pp. 400-416 (2005).  10. Lim, M., Daskin, M.S., Bassamboo, A., and Chopra, S.  Facility reliability problem: formulation, properties,  and algorithm", Naval Research Logistics, 57, pp. 58-  70 (2009).  11. Shishebori, D., Snyder, L.V., and Jabalameli, M.S. A  reliable budget-constrained facility location/network  design problem with unreliable facilities", Networks  and Spatial Economics, 14, pp. 549-580 (2014).  12. Mohammadi, M., Tavakkoli-Moghaddam, R., Siadat,  A., and Dantan, J.-Y. Design of a reliable logistics  network with hub disruptions under uncertainty",  Applied Mathematical Modelling, 40, pp. 5621-5642  (2016).  13. Fattahi, M., Govindan, K., and Keyvanshokooh, E.  Responsive and resilient supply chain network design  under operational and disruption risks with delivery  lead-time sensitive customers", Transportation Research  Part E: Logistics and Transportation Review,  101, pp. 176-200 (2017).  14. Jabbarzadeh, A., Fahimnia, B., Sheu, J.B., and  Shahmoradi-Moghadam, H. Designing a supply chain  resilient to major disruptions and supply/demand  interruptions", Transportation Research Part B, 94,  pp. 121-149 (2016).  15. Losada, C., Scaparra, M.P., and O'Hanley, J.R. Optimizing  system resilience: a facility protection model  with recovery time", European Journal of Operational  Research, 217, pp. 519-530 (2012).  16. Rastgoufard, P., Leevongwat, I., and Rastgoufard,  R. Electric grid hardening and resiliency: part I,  resiliency and safety", Engineering & Technology Reference,  14 pages (2016).  17. Niakan, F. and Rahimi, M. A multi-objective healthcare  inventory routing problem: A fuzzy possibilistic  approach", Transportation Research Part E: Logistics  and Transportation Review, 80, pp. 74-94 (2015).  18. Holmberg, K., Ronnqvist, M., and Yuan, D. An exact  algorithm for the capacitated facility location problems  with single sourcing", European Journal of Operational  Research, 113, pp. 544-559 (1999).  19. Barcelo, J. and Casanovas, J. A heuristic Lagrangean  algorithm for the capacitated plant location problem",  European Journal of Operational Research, 15, pp.  212{226 (1984).  20. Beasley, J.E. Lagrangean heuristics for location problems",  European Journal of Operational Research, 65,  pp. 383{399 (1993).  21. Agar, M.C. and Salhi, S. Lagrangean heuristics applied  to a variety of large capacitated plant location  problems", Journal of the Operational Research Society,  49(1), pp. 1072{1084 (1998).  22. Cortinhal, M.J. and Captivo, M.E. Upper and lower  bounds for the single source capacitated location problem",  European Journal of Operational Research, 151,  pp. 333{351 (2003).  23. Chen, C.H. and Ting, C.J. Combining Lagrangian  heuristic and ant colony system to solve the single  source capacitated facility location problem", Transportation  Research Part E: Logistics and Transportation  Review, 44(6), pp. 1099-1122 (2008).  24. Jena, S.D., Cordeau, J.F., and Gendron, B. Solving a  dynamic facility location problem with partial closing  and reopening", Computers and Operations Research,  67, pp. 143-154 (2016).  25. Ronnqvist, M., Tragantalerngsak, S., and Holt, J. A  repeated matching heuristic for the single-source capacitated  facility location problem", European Journal  of Operational Research, 116, pp. 51-68 (1999).  26. Wu, T., Chu, F., Yang, Z., and Zhou, Z. A Lagrangean  relaxation approach for a two-stage capacitated  facility location problem with choice of facility  size", In Proceedings of the IEEE International Conference  on Systems, Man, and Cybernetics, pp. 713-718  (2015).  27. Li, Q., Savachkin, A., and Zeng, B.O. Reliable facility  location design under disruptions", Computers and  Operations Research, 40, pp. 901-909 (2013).  28. Li, Q. and Savachkin, A. Reliable distribution networks  design with nonlinear forti_cation function",  International Journal of Systems Science, 47, pp. 805-  813 (2014).  29. Held, M., Crowder, D., and Wolf, H. Validation  of subgradient optimization", Mathematical Programming,  6, pp. 62-88 (1974).  30. Eskandarzadeh, S., Tavakkoli-Moghaddam, R., and  Azaron, A. An extension of the relaxation algorithm  for solving a special case of capacitated arc routing  problems", Journal of Combinatorial Optimization,  17(2), pp. 214-234 (2009).  31. Shishebori, D., Youse_ Babadi, A., and Noormohammadzadeh,  Z.A. Lagrangian relaxation approach to  fuzzy robust multi-objective facility location network  design problem", Scientia Iranica, 25, pp. 1750-1767  (2018).