Layerwise finite element piezoelasticity analysis of functionally graded shell panel integrated with piezoelectric actuator and sensor

Document Type : Article


Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran


 In the present study, a layerwise finite element method is utilized to solve the coupled elasticity and piezoelectricity equations to study a functionally graded shell panel integrated with piezoelectric layers under electromechanical loading. The system of equations is reduced to ordinary differential equations with variable coefficients by means of trigonometric function expansion in circumferential and longitudinal directions satisfying mechanical and electrical boundary conditions. These equations are solved using the Galerkin FEM and Newmark method. The results of stress, displacement and electrical potential are presented and the effect of panel thickness and applied voltage on the structural behavior is investigated.


Main Subjects

1. Zhang, S.J., Li, F., and Yu, F.P. Piezoelectric materials
for cryogenic and high-temperature applications",
in F.-G. Yuan, Eds., Struc. Health Monitor. (SHM)
in Aerospace Struct., Woodhead Publishing, pp. 59-93
2. Chalioris, C.E., Karayannis, C.G., Angeli, G.M., Papadopoulos,
N.A., Favvata, M.J., and Providakis, C.P.
Applications of smart piezoelectric materials in a
wireless admittance monitoring system (WiAMS) to
Structures-Tests in RC elements", Case Studies in
Const. Mater., 5, pp. 1-18 (2016).
3. Ribeiro, C., Sencadas, V., Correia, D.M., and
Lanceros-Mendez, S. Piezoelectric polymers as biomaterials
for tissue engineering applications", Coll.
Surf. B: Biointerfaces, 136, pp. 46-55 (2015)
4. Ho, Sh.-T. and Jan, Sh.-J. A piezoelectric motor for
precision positioning applications", Precision Eng., 43,
pp. 285-293 (2016).
5. Ma, H.-K., Luo, W.-F., and Lin, J.-Y. Development of
a piezoelectric micropump with novel separable design
for medical applications", Sens. and Actu. A: Physical,
236, pp. 57-66 (2015)
6. Abella, F., Ribot, J., Doria, G., Duran-Sindreu, F.,
and Roig, M. Applications of piezoelectric surgery
in endodontic surgery: A Literature Review", J. of
Endodontics, 40, pp. 325-332 (2014).
7. Camarda, A., Romani, A., and Tartagni, M. Piezoelectric
transformers for ultra-low voltage energy harvesting
applications", Procedia Eng., 87, pp. 1521-1524
8. Zhang, J. and Meguid, S.A. On the piezoelectric
potential of gallium nitride nanotubes", Nano Energy,
12, pp. 322-330 (2015).
9. Momeni, K. A multiscale approach to nanocomposite
electrical generators", Nano Energy, 4, pp. 132-139
10. Pan, X.H., Yu, S.W., and Feng, X.Q. A continuum
theory of surface piezoelectricity for nanodielectrics",
Sci. China Phys. Mech. Astron., 54, pp. 564-573
M. Javanbakht and M. Mohammadian/Scientia Iranica, Transactions B: Mechanical Engineering 25 (2018) 2660{2674 2673
11. Dai, S., Gharbi, M., Sharma, P., and Park, H.S. Surface
piezoelectricity: size e ects in nanostructures and
the emergence of piezoelectricity in non-piezoelectric
materials", J. Appl. Phys., 110, p. 104305 (2011).
12. Momeni, K., Odegard, G.M., and Yassar, R.S.
Nanocomposite electrical generator based on piezoelectric
zinc oxide nanowires", J. Appl. Phys., 110, p.
114303 (2010).
13. Momeni, K. and Mortazavi, S M.Z. Optimal aspect
ratio of zinc oxide nanowires for a nanocomposite
electrical generator", J. Comput. Theor. Nanosci.,
9(10), pp. 1670-1674 (2012).
14. Koizumi, M. The concept of FGM ceramic transactions",
Func. Grad. Mater., 34, pp. 3-10 (1993).
15. Moya, J.S. Layered ceramics", Adv. Mater., 7, pp.
185-189 (1995).
16. Lu, P., Lee, H.P., and Lu, C. Exact solutions
for simply supported functionally graded piezoelectric
laminates by Stroh-like formalism", J. of Compos.
Struct., 72, pp. 352-363 (2006).
17. Askari Farsangi, M.A. An analytical solution for
dynamic behavior of thick doubly curved functionally
graded smart panels", J. of Compos. Struct., 107, pp.
88-102 (2014).
18. Jafari Fesharaki, J., Jafari Fesharaki, V., Yazdipoor,
M., and Razavian, B. Two-dimensional solution for
electro-mechanical behavior of functionally graded
piezoelectric hollow cylinder", Appl. Mathematical
Model., 36(11), pp. 5521-5533 (2012).
19. Bodaghi, M. and Shakeri, M. An analytical approach
for free vibration and transient response of functionally
graded piezoelectric cylindrical panels subjected to
impulsive loads", Compos. Struct., 94(5), pp. 1721-
1735 (2012).
20. Duc, N.D., Quan, T.Q., and Luat, V.D. Nonlinear
dynamic analysis and vibration of shear deformable
piezoelectric FGM double curved shallow shells under
damping-thermo-electro-mechanical loads", Compos.
Struct., 125, pp. 29-40 (2015).
21. PCY, L. and JD, Y. Governing equations of piezoelectric
plates with graded properties across the thickness",
Pro Annu. IEEE. Int. Freq. Cont. Symp., pp.
623-631 (1996).
22. Behjat, B., Sadighi, M., Armin, A., Abbasi, M.,
and Salehi, M. Static, dynamic and free vibration
analysis of functionally graded piezoelectric panels
using nite element method", J. Intell. Mater. Sys.
Struct., 20(13), pp. 1635-1646 (2009).
23. Alibeigloo, A. and Chen, W.Q. Elasticity solution for
an FGM cylindrical panel integrated with piezoelectric
layers", Europ. J. of Mech.-A/Solids, 29(4), pp. 714-
723 (2010).
24. Behjat, B., Salehi, M., Armin, A., Sadighi, M., and
Abbasi, M. Static and dynamic analysis of functionally
graded piezoelectric plates under mechanical and
electrical loading", Scientia Iranica, 18(4), pp. 986-994
25. Panda, S. and Ray, M.C. Nonlinear nite element
analysis of functionally graded plates integrated with
patches of piezoelectric ber reinforced composite",
Finite Elem. in Anal. and Des., 44, pp. 493-504 (2008).
26. Javanbakht, M., Daneshmehr, A.R., Shakeri, M., and
Nateghi, A.R. The dynamic analysis of the functionally
graded piezoelectric (FGPM) shell panel based
on three-dimensional elasticity theory", Appl. Math.
Model., 36, pp. 5320-5333 (2012).
27. Javanbakht, M., Shakeri, M., and Sadeghi, S.N.
Dynamic analysis of functionally graded shell with
piezoelectric layers based on elasticity", Proc. Inst.
Mech. Eng. C J. Mech. Eng. Sci., 223, pp. 2039-2047
28. Javanbakht, M., Shakeri, M., Sadeghi, S.N., and
Daneshmehr, A.R. The analysis of functionally
graded shallow and non-shallow shell panels with
piezoelectric layers under dynamic load and electrostatic
excitation based on elasticity", Europ. J. of
Mech.-A/Solids, 30, pp. 983-991 (2011).
29. Bhangale, R.K. and Ganesan, N. Static analysis
of simply supported functionally graded and layered
magneto-electro-elastic plates", Int. J. of Sol. and
Struct., 43, pp. 3230-3253 (2009).
30. Shakeri, M., Akhlaghi, M., and Hoseini, S.M. Vibration
and radial wave propagation velocity in functionally
graded thick hollow cylinder", J. of Compos.
Struc., 76, pp. 174-181 (2006).
31. Huang, X.L. and Shen, H.-S. Vibration and dynamic
response of functionally graded plates with piezoelectric
actuators in thermal environments", J. of Sou. and
Vib., 289, pp. 25-53 (2006).
32. Rouzegar, J. and Abad, F. Free vibration analysis of
FG plate with piezoelectric layers using four-variable
re ned plate theory", Thin Wall. Struct., 89, pp. 76-83
33. Shakeri, M., Sadeghi, S.N., Javanbakht, M., and
Hatamikian, H. Dynamic analysis of functionally
graded plate integrated with two piezoelectric layers,
based on three dimensional elasticity solution", Proc.
Inst. Mech. Eng. C J. Mech. Eng. Sci., 223, pp. 1297-
1309 (2009).
34. Yiqi, M. and Yiming, F. Nonlinear dynamic response
and active vibration control for piezoelectric functionally
graded plate", J. of Sou. and Vib., 329(11), pp.
2015-2028 (2010).
35. Akbari Alashti, R. and Khorsand, M. Threedimensional
thermo-elastic analysis of a functionally
graded cylindrical shell with piezoelectric layers by
di erential quadrature method", Int. J. of Press. Vess.
and Pipe., 88(5-7), pp. 167-180 (2011).
36. Kiani, Y., Sadighi, M., and Eslami, M.R. Dynamic
analysis and active control of smart doubly curved
FGM panels", Compos. Struct., 102, pp. 205-216
2674 M. Javanbakht and M. Mohammadian/Scientia Iranica, Transactions B: Mechanical Engineering 25 (2018) 2660{2674
37. He, X.Q., Ng, T.Y., Sivashankar, S., and Liew, K.M.
Active control of FGM plates with integrated piezoelectric
sensors and actuators", Int. J. of Sol. and
Struct., 38, pp. 1641-1655 (2001).
38. Kong, Y. and Liu, J. Vibration con nement of
thickness-shear and thickness-twist modes in a functionally
graded piezoelectric plate", Acta Mech. Soli.
Sin., 24(4), pp. 299-307 (2011).
39. Dehghan, M., Zamani Nejad, M., and Moosaie, A.
Thermo-electro-elastic analysis of functionally graded
piezoelectric shells of revolution: Governing equations
and solutions for some simple cases", Int. J. of Eng.
Sci., 104, pp. 34-61 (2016).
40. Jafari, A.A., Khalili, S.M.R., and Tavakolian, M.
Nonlinear vibration of functionally graded cylindrical
shells embedded with a piezoelectric layer", Thin Wall.
Struct., 79, pp. 8-15 (2014).
41. Liew, K.M., Yang, J., and Kitipornchai, S. Postbuckling
of piezoelectric FGM plates subject to thermoelectro-
mechanical loading", Int. J. of Sol. and Struct.,
40, pp. 3869-3892 (2003).
42. Shen, H.-S. Postbuckling of axially loaded FGM
hybrid cylindrical shells in thermal environments",
Compos. Sci. and Tech., 65(11-12), pp. 1675-1690
43. Shen, H.-S. and Noda, N. Postbuckling of pressureloaded
FGM hybrid cylindrical shells in thermal environments",
Compos. Struct., 77(4), pp. 546-560
44. Shen, H.-S. and Liew, K. Postbuckling of axially
loaded functionally graded cylindrical panels with
piezoelectric actuators in thermal environments", J. of
Eng. Mech., 130(8), pp. 982-995 (2004).
45. Shen, H.-S. and Li, S.R. Postbuckling of sandwich
plates with FGM face sheets and temperaturedependent
properties", Compos. Part B: Eng., 39, pp.
332-344 (2008).
46. Shen, H.-S. Nonlinear thermal bending response of
FGM plates due to heat conduction", Compos Part B:
Eng., 38, pp. 201-215 (2007).
47. Sladek, J., Sladek, V., Stanak, P., Zhang, C., and
Wunsche, M. Analysis of the bending of circular
piezoelectric plates with functionally graded material
properties by a MLPG method", Eng. Struct., 47, pp.
81-89 (2013).
48. Wu, C.-P. and Liu, Y.-C. A review of semi-analytical
numerical methods for laminated composite and multilayered
functionally graded elastic/piezoelectric plates
and shells", Compos. Struct., 147, pp. 1-15 (2016).
49. Gupta, A. and Talha, M. Recent development in
modeling and analysis of functionally graded materials
and structures progress in aerospace sciences", Prog. in
Aerospace Sci., 79, pp. 1-14 (2015)
50. Thai, H.-T. and Kim, S.-E. A review of theories for
the modeling and analysis of functionally graded plates
and shells", Compos. Struct., 128, pp. 70-86 (2015).
51. Daneshmehr, A. and Shakeri, M. The response analysis
of the piezoelectric shell panel actuators based on
the theory of elasticity", ASME 7th Bien. Conf. on
Eng. Syst. Des. and Analysis, 2, Manchester, England,
pp. 133-141 (2004).
52. Daneshmehr, A.R. and Shakeri, M. Threedimensional
elasticity solution of cross-ply shallow
and non-shallow panels with piezoelectric sensors
under dynamic load", Compos. Struct., 80, pp.
429-439 (2007).
53. Wu, X.-H., Shen, Y.-P., and Chen, C. An exact solution
for functionally graded piezothermoelastic cylindrical
shell as sensors or actuators", Mater. Letters,
57, pp. 3532-3542 (2003).