Document Type : Article

**Authors**

Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran

**Abstract**

**Keywords**

**Main Subjects**

1. Zhang, S.J., Li, F., and Yu, F.P. Piezoelectric materials

for cryogenic and high-temperature applications",

in F.-G. Yuan, Eds., Struc. Health Monitor. (SHM)

in Aerospace Struct., Woodhead Publishing, pp. 59-93

(2016).

2. Chalioris, C.E., Karayannis, C.G., Angeli, G.M., Papadopoulos,

N.A., Favvata, M.J., and Providakis, C.P.

Applications of smart piezoelectric materials in a

wireless admittance monitoring system (WiAMS) to

Structures-Tests in RC elements", Case Studies in

Const. Mater., 5, pp. 1-18 (2016).

3. Ribeiro, C., Sencadas, V., Correia, D.M., and

Lanceros-Mendez, S. Piezoelectric polymers as biomaterials

for tissue engineering applications", Coll.

Surf. B: Biointerfaces, 136, pp. 46-55 (2015)

4. Ho, Sh.-T. and Jan, Sh.-J. A piezoelectric motor for

precision positioning applications", Precision Eng., 43,

pp. 285-293 (2016).

5. Ma, H.-K., Luo, W.-F., and Lin, J.-Y. Development of

a piezoelectric micropump with novel separable design

for medical applications", Sens. and Actu. A: Physical,

236, pp. 57-66 (2015)

6. Abella, F., Ribot, J., Doria, G., Duran-Sindreu, F.,

and Roig, M. Applications of piezoelectric surgery

in endodontic surgery: A Literature Review", J. of

Endodontics, 40, pp. 325-332 (2014).

7. Camarda, A., Romani, A., and Tartagni, M. Piezoelectric

transformers for ultra-low voltage energy harvesting

applications", Procedia Eng., 87, pp. 1521-1524

(2014).

8. Zhang, J. and Meguid, S.A. On the piezoelectric

potential of gallium nitride nanotubes", Nano Energy,

12, pp. 322-330 (2015).

9. Momeni, K. A multiscale approach to nanocomposite

electrical generators", Nano Energy, 4, pp. 132-139

(2014).

10. Pan, X.H., Yu, S.W., and Feng, X.Q. A continuum

theory of surface piezoelectricity for nanodielectrics",

Sci. China Phys. Mech. Astron., 54, pp. 564-573

(2011).

M. Javanbakht and M. Mohammadian/Scientia Iranica, Transactions B: Mechanical Engineering 25 (2018) 2660{2674 2673

11. Dai, S., Gharbi, M., Sharma, P., and Park, H.S. Surface

piezoelectricity: size eects in nanostructures and

the emergence of piezoelectricity in non-piezoelectric

materials", J. Appl. Phys., 110, p. 104305 (2011).

12. Momeni, K., Odegard, G.M., and Yassar, R.S.

Nanocomposite electrical generator based on piezoelectric

zinc oxide nanowires", J. Appl. Phys., 110, p.

114303 (2010).

13. Momeni, K. and Mortazavi, S M.Z. Optimal aspect

ratio of zinc oxide nanowires for a nanocomposite

electrical generator", J. Comput. Theor. Nanosci.,

9(10), pp. 1670-1674 (2012).

14. Koizumi, M. The concept of FGM ceramic transactions",

Func. Grad. Mater., 34, pp. 3-10 (1993).

15. Moya, J.S. Layered ceramics", Adv. Mater., 7, pp.

185-189 (1995).

16. Lu, P., Lee, H.P., and Lu, C. Exact solutions

for simply supported functionally graded piezoelectric

laminates by Stroh-like formalism", J. of Compos.

Struct., 72, pp. 352-363 (2006).

17. Askari Farsangi, M.A. An analytical solution for

dynamic behavior of thick doubly curved functionally

graded smart panels", J. of Compos. Struct., 107, pp.

88-102 (2014).

18. Jafari Fesharaki, J., Jafari Fesharaki, V., Yazdipoor,

M., and Razavian, B. Two-dimensional solution for

electro-mechanical behavior of functionally graded

piezoelectric hollow cylinder", Appl. Mathematical

Model., 36(11), pp. 5521-5533 (2012).

19. Bodaghi, M. and Shakeri, M. An analytical approach

for free vibration and transient response of functionally

graded piezoelectric cylindrical panels subjected to

impulsive loads", Compos. Struct., 94(5), pp. 1721-

1735 (2012).

20. Duc, N.D., Quan, T.Q., and Luat, V.D. Nonlinear

dynamic analysis and vibration of shear deformable

piezoelectric FGM double curved shallow shells under

damping-thermo-electro-mechanical loads", Compos.

Struct., 125, pp. 29-40 (2015).

21. PCY, L. and JD, Y. Governing equations of piezoelectric

plates with graded properties across the thickness",

Pro Annu. IEEE. Int. Freq. Cont. Symp., pp.

623-631 (1996).

22. Behjat, B., Sadighi, M., Armin, A., Abbasi, M.,

and Salehi, M. Static, dynamic and free vibration

analysis of functionally graded piezoelectric panels

using nite element method", J. Intell. Mater. Sys.

Struct., 20(13), pp. 1635-1646 (2009).

23. Alibeigloo, A. and Chen, W.Q. Elasticity solution for

an FGM cylindrical panel integrated with piezoelectric

layers", Europ. J. of Mech.-A/Solids, 29(4), pp. 714-

723 (2010).

24. Behjat, B., Salehi, M., Armin, A., Sadighi, M., and

Abbasi, M. Static and dynamic analysis of functionally

graded piezoelectric plates under mechanical and

electrical loading", Scientia Iranica, 18(4), pp. 986-994

(2011).

25. Panda, S. and Ray, M.C. Nonlinear nite element

analysis of functionally graded plates integrated with

patches of piezoelectric ber reinforced composite",

Finite Elem. in Anal. and Des., 44, pp. 493-504 (2008).

26. Javanbakht, M., Daneshmehr, A.R., Shakeri, M., and

Nateghi, A.R. The dynamic analysis of the functionally

graded piezoelectric (FGPM) shell panel based

on three-dimensional elasticity theory", Appl. Math.

Model., 36, pp. 5320-5333 (2012).

27. Javanbakht, M., Shakeri, M., and Sadeghi, S.N.

Dynamic analysis of functionally graded shell with

piezoelectric layers based on elasticity", Proc. Inst.

Mech. Eng. C J. Mech. Eng. Sci., 223, pp. 2039-2047

(2009).

28. Javanbakht, M., Shakeri, M., Sadeghi, S.N., and

Daneshmehr, A.R. The analysis of functionally

graded shallow and non-shallow shell panels with

piezoelectric layers under dynamic load and electrostatic

excitation based on elasticity", Europ. J. of

Mech.-A/Solids, 30, pp. 983-991 (2011).

29. Bhangale, R.K. and Ganesan, N. Static analysis

of simply supported functionally graded and layered

magneto-electro-elastic plates", Int. J. of Sol. and

Struct., 43, pp. 3230-3253 (2009).

30. Shakeri, M., Akhlaghi, M., and Hoseini, S.M. Vibration

and radial wave propagation velocity in functionally

graded thick hollow cylinder", J. of Compos.

Struc., 76, pp. 174-181 (2006).

31. Huang, X.L. and Shen, H.-S. Vibration and dynamic

response of functionally graded plates with piezoelectric

actuators in thermal environments", J. of Sou. and

Vib., 289, pp. 25-53 (2006).

32. Rouzegar, J. and Abad, F. Free vibration analysis of

FG plate with piezoelectric layers using four-variable

rened plate theory", Thin Wall. Struct., 89, pp. 76-83

(2015).

33. Shakeri, M., Sadeghi, S.N., Javanbakht, M., and

Hatamikian, H. Dynamic analysis of functionally

graded plate integrated with two piezoelectric layers,

based on three dimensional elasticity solution", Proc.

Inst. Mech. Eng. C J. Mech. Eng. Sci., 223, pp. 1297-

1309 (2009).

34. Yiqi, M. and Yiming, F. Nonlinear dynamic response

and active vibration control for piezoelectric functionally

graded plate", J. of Sou. and Vib., 329(11), pp.

2015-2028 (2010).

35. Akbari Alashti, R. and Khorsand, M. Threedimensional

thermo-elastic analysis of a functionally

graded cylindrical shell with piezoelectric layers by

dierential quadrature method", Int. J. of Press. Vess.

and Pipe., 88(5-7), pp. 167-180 (2011).

36. Kiani, Y., Sadighi, M., and Eslami, M.R. Dynamic

analysis and active control of smart doubly curved

FGM panels", Compos. Struct., 102, pp. 205-216

(2013).

2674 M. Javanbakht and M. Mohammadian/Scientia Iranica, Transactions B: Mechanical Engineering 25 (2018) 2660{2674

37. He, X.Q., Ng, T.Y., Sivashankar, S., and Liew, K.M.

Active control of FGM plates with integrated piezoelectric

sensors and actuators", Int. J. of Sol. and

Struct., 38, pp. 1641-1655 (2001).

38. Kong, Y. and Liu, J. Vibration connement of

thickness-shear and thickness-twist modes in a functionally

graded piezoelectric plate", Acta Mech. Soli.

Sin., 24(4), pp. 299-307 (2011).

39. Dehghan, M., Zamani Nejad, M., and Moosaie, A.

Thermo-electro-elastic analysis of functionally graded

piezoelectric shells of revolution: Governing equations

and solutions for some simple cases", Int. J. of Eng.

Sci., 104, pp. 34-61 (2016).

40. Jafari, A.A., Khalili, S.M.R., and Tavakolian, M.

Nonlinear vibration of functionally graded cylindrical

shells embedded with a piezoelectric layer", Thin Wall.

Struct., 79, pp. 8-15 (2014).

41. Liew, K.M., Yang, J., and Kitipornchai, S. Postbuckling

of piezoelectric FGM plates subject to thermoelectro-

mechanical loading", Int. J. of Sol. and Struct.,

40, pp. 3869-3892 (2003).

42. Shen, H.-S. Postbuckling of axially loaded FGM

hybrid cylindrical shells in thermal environments",

Compos. Sci. and Tech., 65(11-12), pp. 1675-1690

(2005).

43. Shen, H.-S. and Noda, N. Postbuckling of pressureloaded

FGM hybrid cylindrical shells in thermal environments",

Compos. Struct., 77(4), pp. 546-560

(2007).

44. Shen, H.-S. and Liew, K. Postbuckling of axially

loaded functionally graded cylindrical panels with

piezoelectric actuators in thermal environments", J. of

Eng. Mech., 130(8), pp. 982-995 (2004).

45. Shen, H.-S. and Li, S.R. Postbuckling of sandwich

plates with FGM face sheets and temperaturedependent

properties", Compos. Part B: Eng., 39, pp.

332-344 (2008).

46. Shen, H.-S. Nonlinear thermal bending response of

FGM plates due to heat conduction", Compos Part B:

Eng., 38, pp. 201-215 (2007).

47. Sladek, J., Sladek, V., Stanak, P., Zhang, C., and

Wunsche, M. Analysis of the bending of circular

piezoelectric plates with functionally graded material

properties by a MLPG method", Eng. Struct., 47, pp.

81-89 (2013).

48. Wu, C.-P. and Liu, Y.-C. A review of semi-analytical

numerical methods for laminated composite and multilayered

functionally graded elastic/piezoelectric plates

and shells", Compos. Struct., 147, pp. 1-15 (2016).

49. Gupta, A. and Talha, M. Recent development in

modeling and analysis of functionally graded materials

and structures progress in aerospace sciences", Prog. in

Aerospace Sci., 79, pp. 1-14 (2015)

50. Thai, H.-T. and Kim, S.-E. A review of theories for

the modeling and analysis of functionally graded plates

and shells", Compos. Struct., 128, pp. 70-86 (2015).

51. Daneshmehr, A. and Shakeri, M. The response analysis

of the piezoelectric shell panel actuators based on

the theory of elasticity", ASME 7th Bien. Conf. on

Eng. Syst. Des. and Analysis, 2, Manchester, England,

pp. 133-141 (2004).

52. Daneshmehr, A.R. and Shakeri, M. Threedimensional

elasticity solution of cross-ply shallow

and non-shallow panels with piezoelectric sensors

under dynamic load", Compos. Struct., 80, pp.

429-439 (2007).

53. Wu, X.-H., Shen, Y.-P., and Chen, C. An exact solution

for functionally graded piezothermoelastic cylindrical

shell as sensors or actuators", Mater. Letters,

57, pp. 3532-3542 (2003).

Transactions on Mechanical Engineering (B)

September and October 2018Pages 2660-2674