Proposing a high-efficiency dielectrophoretic system for separation of dead and live cells

Document Type : Article

Authors

Department of Mechanical Engineering, Sharif University of Technology, Azadi Ave, Tehran, Iran

Abstract

Recently, electrode-based Dielectrophoresis (eDEP) has been used for particle manipulation by means of triangular electrodes. In this theoretical and numerical study, a microchannel with quarter-of-ellipse electrodes is presented and a detailed comparison with triangular electrodes is made. Electric field, resultant DEP force, and particle trajectories for each microchannel are evaluated by means of COMSOL Multiphysics 4.4. Afterwards focusing and separation efficiencies of the systems are assessed and compared. Finally, our proposed model’s separation efficiency of live and dead cells is compared with our previous model published in the literature [1]. It is demonstrated that our proposed model have higher lateral DEP force, responsible for cell separation, compared to the previous triangular-electrode model. This feature is reflected in the 96% focusing efficiency for 10-micron particles and 100% separation efficiency for live and dead mammalian cells.

Keywords

Main Subjects


References
1. Hemmatifar, A., Saidi, MS., Sadeghi, A. and Sani, M. Continuous size-based focusing and bifurcating microparticle streams using a negative dielectrophoretic system", Micro fluidics and Nano uidics, 14(1-2), pp. 265-276 (2013).
2. Baratchi, S., Kanwar, R.K., Khoshmanesh, K., Vasu, P., Ashok, C., Hittu, M., Parratt, A., Krishnakumar,
S., Sun, X. and Kanwar, J.R. Promises of nanotechnology
for drug delivery to brain in neurodegenerative
diseases", Current Nanoscience, 5(1), pp. 15-25 (2009).
3. Castillo, J., Dimaki, M. and Svendsen, W.E. Manipulation
of biological samples using micro and nano techniques",
Integrative Biology, 1(1), pp. 30-42 (2009).
4. El-Ali, J., Sorger, P.K. and Jensen, K.F. Cells on
chips", Nature, 442(7101), pp. 403-411 (2006).
5. Khoshmanesh, K., Kouzani, A.Z., Nahavandi, S.,
Baratchi, S. and Kanwar, J.R. At a glance: cellular
biology for engineers", Computational Biology Chemistry,
32(5), pp. 315-331 (2008).
6. Andersson, H. and Van den Berg, A. Micro
uidic
devices for cellomics: a review", Sensors and Actuators
B: Chemical, 92(3), pp. 315-325 (2003).
7. Becker, F.F., Wang, X.B., Huang, Y., Pethig, R.,
Vykoukal, J. and Gascoyne, P. Separation of human
breast cancer cells from blood by di erential dielectric
anity", Proceeding of the National Academy of Sciences,
92(3), pp. 860-864 (1995).
8. Roda, B., Zattoni, A., Reschiglian, P., Moon, M.H.,
Mirasoli, M., Michelini, E. and Roda, A. Field-
ow
fractionation in bioanalysis: a review of recent trends",
Analytica Chimica Acta, 635(2), pp. 132-143 (2009).
9. Zhang, C., Khoshmanesh, K., Mitchell, A. and
Kalantar-zadeh, K. Dielectrophoresis for the manipulation
of micro/nano particles in micro
uidic systems",
Analytical and Bioanalytical Chemistry, 396(1), pp.
401-420 (2010).
10. Gascoyne, P.R.C. and Vykoukal, J.V. Dielectrophoresis-
based sample handling in general-purpose
programmable diagnostic instruments", Proceedings of
the IEEE, 92(1), pp. 22-42 (2004).
11. Morgan, H. and Green, N., AC Electrokinetics:
Colloids and Nanoparticles, Research Studies Press
(2003).
12. Gray, D.S., Tan, J.L., Voldman, J. and Chen, C.S.
Dielectrophoretic registration of living cells to a
microelectrode array", Biosensors and Bioelectronics,
19(7), pp. 771-780 (2004).
13. Hashimoto, M., Kaji, H. and Nishizawa, M. Selective
capture of a speci c cell type from mixed leucocytes in
an electrode-integrated micro
uidic device", Biosensors
and Bioelectronics, 24(9), pp. 2892-2897 (2009).
14. Pethig, R. and Talary, M.S. Dielectrophoretic detection
of membrane morphology changes in Jurkat Tcells
undergoing etoposide induced apoptosis", IET
Nanobiotechnology, 1(1), pp. 2-9 (2007).
15. Urdaneta, M. and Smela, E. Multiple frequency
dielectrophoresis", Electrophoresis, 28(18), pp. 3145-
3155 (2007).
16. Hoettges, K.F., Dale, J.W. and Hughes, M.P. Rapid
determination of antibiotic resistance in E, coli using
dielectrophoresis", Physics in Medicine Biology,
52(19), pp. 6001-6009 (2007).
17. Moon, H.S., Nam, Y.W., Park, J.C. and Jung, H.I.
Dielectrophoretic separation of airborne microbes and
dust particles using a micro
uidic channel for realtime
bioaerosol monitoring", Environmental Science
and Technology, 43(15), pp. 5857-5863 (2009).
18. Sanchis, A., Brown, A.P., Sancho, M., Martinez,
G., Sebastian, J.L., Munoz, S. and Miranda, J.M.
Dielectric characterization of bacterial cells using dielectrophoresis",
Bioelectromagnetics, 28(5), pp. 393-
401 (2007).
19. Morgan, H., Hughes, M.P. and Green, N.G. Separation
of submicron bioparticles by dielectrophoresis",
Biophysical journal, 77(1), pp. 516-525 (1999).
20. Morgan, H., Sun, T., Holmes, D., Gawad, S. and
Green, NG. Single cell dielectric spectroscopy", Journal
of Physics D: Applied Physics, 40(1), pp. 61-70
(2007).
21. Dalton, C., Goater, A.D., Burt, J.P.H. and Smith,
H.V. Analysis of parasites by electrorotation", Journal
of Applied Microbiology, 96(1), pp. 24-32 (2004).
22. Gascoyne, P., Satayavivad, J. and Ruchirawat, M.
Micro
uidic approaches to malaria detection", Acta
Tropica, 89(3), pp. 357-369 (2004).
23. Hoeb, M., Radler, J.O., Klein, S., Stutzmann, M.
and Brandt, M.S. Light induced dielectrophoretic
manipulation of DNA", Biophysical Journal, 93(3),
pp. 1032-1038 (2007).
24. Kuzyk, A., Yurke, B., Toppari, J.J., Linko, V.
and Torma, P. Dielectrophoretic trapping of DNA
origami", Small, 4(4), pp. 447-450 (2008).
25. Radu, M., Ionescu, M., Irimescu, N., Iliescu, K.,
Pologea-Moraru, R. and Kovacs, E. Orientation behavior
of retinal photoreceptors in alternating electric
elds", Biophysical Journal, 89(5), pp. 3548-3554
(2005).
H. Shayestehpour et al./Scientia Iranica, Transactions B: Mechanical Engineering 25 (2018) 186{195 195
26. Uppalapati, M., Huang, Y.M., Jackson, T.N. and Hancock,
W.O. Microtubule alignment and manipulation
using AC electrokinetics", Small, 4(9), pp. 1371-1381
(2008).
27. Pohl, H.A. and Hawk, I. Separation of living and
dead cells by dielectrophoresis", Science, 152(3722),
pp. 647-649 (1966).
28. Pethig, R., Huang, Y., Wang, X.B. and Burt, J.P.H.
Positive and Negative dielectrophoretic collection of
colloidal particles using interdigitated castellated microelectrodes",
Journal of Physics D: Applied Physics,
25(5), p. 881 (1992).
29. X.-B. H. Y. H. R. B. J. Wang, Theoretical and
experimental investigations of the interdependence of
the dielectric, dielectrophoretic and electrorotational
behaviour of colloidal particles", Journal of Physics
D: Applied Physics, 26(2), pp. 312-322 (1993).
30. Sano, M.B., Caldwell, J.L. and Davalos, R.V. Modeling
and development of a low frequency contactless
dielectrophoresis (cDEP) platform to sort cancer cells
from dilute whole blood samples", Biosensors and
Bioelectronics, 30(1), pp. 13-20 (2011).
31. Sha ee, H., Sano, M.B., Henslee, E.A., Caldwell, J.L.
and Davalos, R.V. Selective isolation of live/dead cells
using contactless dielectrophoresis (cDEP)", Lab on a
Chip, 10(4), pp. 438-445 (2010).
32. Fan, S.-K., Huang, P.-W., Wang, T.-T. and Peng,
Y.-H. Cross-scale electric manipulations of cells and
droplets by frequency-modulated dielectrophoresis and
electrowetting", Lab on a Chip, 8(8), pp. 1325-1331
(2008).
33. Yantzi, J.D., Yeow, J.T.W. and Abdallah, S.S. Multiphase
electrodes for microbead control applications:
integration of DEP and electrokinetics for bio-particle
positioning", Biosensors and Bioelectronics, 22(11),
pp. 2539-2545 (2007).
34. Jones, T., Electromechanics of Particles, Cambridge:
Cambridge University Press (2003).
35. Daz, R. and Payen, S., Biological Cell Separation
Using Dielectrophoresis in a Micro
uidic Device, Bio
and Thermal Engineering Laboratory (2008).