Plasmonic Circular Dichroism Study of Gold Nanorod-Quadruplex Nanobioconjugates

Document Type : Article

Authors

1 Protein Research Center, Shahid Beheshti University G.C., Velenjak Tehran, Iran

2 Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, 154-14115 Tehran, Iran

3 Department of Bioscience and Biotechnology, Malik-Ashtar University of Technology, Tehran, Iran

4 5- Laser and Plasma Research Institute, Shahid Beheshti University G.C., Velenjak Tehran. Iran.

5 5- Laser and Plasma Research Institute, Shahid Beheshti University G.C., Velenjak Tehran. Iran

6 Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, 154-14115 Tehran, Iran

Abstract

Circular dichroism spectroscopy is a simple way to study G-quadruplex structure and is very useful for monitoring the conformational changes in G-quadruplex structure induced by modifications of the environment. Plasmonic nanoparticles with localized surface plasmon resonance (LSPR) can create strong electromagnetic fields at the surface of plasmonic metals, which remarkably influence the optical properties of molecules. Plasmonic CD is a new CD signal which originates from the dipole–dipole interactions between surface plasmons of NPs and chiral biomolecules have received interest research in various fields of nanotechnology. In this paper we study the interaction between gold nanorods (GNR) and two types of G-quadruplex (parallel and antiparallel), to monitor the alterations in DNA conformation and plasmonic CD signal upon formation of GNR-quadruplex nanobioconjugate. The results from this study indicate the plasmonic CD signals in visible regions are more sensitive than Far-UV CD signals to detect the spatial conformational state of G-quadruplex-GNR nanobioconjugate. 

Keywords

Main Subjects


References
1. Zhu, Xinli, Yang Zhang, Jiasen Zhang, Jun Xu,
Yue Ma, Zhiyuan Li, and Dapeng Yu. Ultra ne
and smooth full metal nanostructures for plasmonics",
Advanced Materials, 22(39), pp. 4345-4349 (2010).
2. Kuzyk, Anton, Robert Schreiber, Zhiyuan Fan,
Gunther Pardatscher, Eva-Maria Roller, Alexander
Hvgele, Friedrich C. Simmel, Alexander O. Govorov,
and Tim Liedl. DNA-based self-assembly of chiral
plasmonic nanostructures with tailored optical response",
Nature, 483(7389), pp. 311-314 (2012).
3. Haes, Amanda, J., Christy, L. Haynes, Adam, D.,
McFarland, George, C. Schatz, Richard, P. Van Duyne,
and Shengli Zou. Plasmonic materials for surfaceenhanced
sensing and spectroscopy", MRS Bulletin,
30(5), pp. 368-375 (2005).
4. Tan, Shawn J., Michael J. Campolongo, Dan Luo, and
Wenlong Cheng. Building plasmonic nanostructures
Z. Bagheri et al./Scientia Iranica, Transactions F: Nanotechnology 25 (2018) 1783{1788 1787
with DNA", Nature Nanotechnology, 6(5), pp. 268-276
(2011).
5. Park, Sung Yong, Julianne M. Gibbs-Davis, SonBinh
T. Nguyen, and George C. Schatz. Sharp melting in
DNA-linked nanostructure systems: thermodynamic
models of DNA-linked polymers", The Journal of
Physical Chemistry B, 111(30), pp. 8785-8791 (2007).
6. Azizi, A., Ranjbar, B., Moghadam, T., and Bagheri,
Z. Plasmonic circular dichroism study of DNA-Gold
nanoparticles bioconjugates", Plasmonics, 9(2), pp.
273-281 (2014).
7. Konig, Sebastian, L.B., Amanda, C. Evans, and
Huppert, J.L. Seven essential questions on Gquadruplexes",
Biomolecular Concepts, 1(2), pp. 197-
213 (2010).
8. Kypr, Jaroslav, Iva Kejnovska, Renciuk, D., and
VorlIckova, M. Circular dichroism and conformational
polymorphism of DNA", Nucleic Acids Research,
37(6), pp. 1713-1725 (2009).
9. Jaumot, Joaquim, and Raimundo Gargallo Experimental
methods for studying the interactions between
G-quadruplex structures and ligands", Current Pharmaceutical
Design, 18(14), pp. 1900-1916 (2012).
10. Liu, Wei, Hong Zhu, Bin Zheng, Sheng Cheng, Yan Fu,
Wei Li, Tai-Chu Lau, and Haojun Liang. Kinetics and
mechanism of G-quadruplex formation and conformational
switch in a G-quadruplex of PS2. M induced by
Pb2+", Nucleic Acids Research, 40(9), pp. 4229-4236
(2012).
11. Moghadam Tohidi, T., Ranjbar, B., Khajeh, K.H.,
Etezad, S.M., Khalifeh, K.H., and Ganjalikhany, M.R.
Interaction of lysozyme with gold nanorods: conformation
and activity investigations", International
Journal of Biological Macromolecules, 49(4), pp. 629-
636 (2011).
12. Sau, Tapan K., and Catherine J. Murphy. Seeded
high yield synthesis of short Au nanorods in aqueous
solution", Langmuir, 20(15), pp. 6414-6420 (2004).
13. Huang, Xiaohua, Svetlana Neretina, and Mostafa
A. El-Sayed Gold nanorods: from synthesis and
properties to biological and biomedical applications",
Advanced Materials, 21(48), pp. 4880-4910 (2009).