Integrated and Dynamic Design of Sustainable Closed-loop Supply Chain Network Considering Pricing

Document Type: Article


Industrial Engineering Department, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran


In this paper, a novel multi-objective model for dynamic and integrated network design of sustainable closed-loop supply chain network is proposed, which aims to optimize economic, environmental, and social concerns, simultaneously. In order to have a dynamic design, multiple strategic periods are considered during the planning horizon. Furthermore, different short-term decisions are integrated with long-term decisions related to the network design problem. Two of these short-term decisions are determining selling price of products in forward logistics and buying price of used products from customer zones in reverse logistics. Based on the complexity of proposed multi-objective model, a multi-objective imperialist competitive algorithm (MOICA) is proposed to solve the model, and the results are compared with a non-dominated sorting genetic algorithm (NSGA-II). Finally, to evaluate the performance of proposed algorithm, several numerical examples are used, which the results indicate the efficiency of the proposed algorithm.


Main Subjects