Document Type : Article


1 Department of Electronics & Communication Engineering, Photonic Research Laboratory (PRL), Indian Institute of Technology, Roorkee 247667, Uttarakhand, India

2 Department of Electronics Engineering, Indian Institute of Technology (ISM), Dhanbad 826004, Jharkhand, India


In this work, we investigate the influence of the second order-(2OD) and third order-(3OD) dispersion terms on chirp signal generation and transmission through RF photonic link without optical filter. Dispersion equations are formalised using Taylor series and Bessel function to study the link performance. Our result (Eye diagrams) shows that the 2OD+3OD have significant impact on chirp mm-wave propagating through fiber of different lengths. In this paper chirp mm signal is controlled at photo detector by individual phase term of external modulators. Moreover, we also demonstrated experimentally that the chirp rate can be significantly controlled by properly choosing the type of fiber in the experiments. We discussed the RF photonic link performance in terms of Optical Sideband Suppression Ratio (OPSSR), Radio Frequency Spurious Suppression Ratio (RFSSR), Bit Error Rate (BER). Theoretical results are verified using MATLAB Software.


Main Subjects

1. Yao, J.P. Microwave photonics: Arbitrary waveform
generation", Nature Photonics, 4, pp. 79-80 (2010).
2. Li, W. and Yao, J. Generation of linearly chirped microwave
waveform with an increased time-bandwidth
product based on a tunable optoelectronic oscillator
and a recirculating phase modulation loop", IEEE J.
Lightwave Technol., 32(20), pp. 3573-3579 (2014).
3. Capmany, J. and Novak, D. Microwave photonics
combines two worlds", Nature Photon., 1, pp. 319-330
4. Supradeepa, V.R., Long, Ch.M., Wu, R., Ferdous, F.,
Hamidi, E., Leaird, D.E., and Weiner, A.M. Combbased
radiofrequency photonic lters with rapid tunability
and high selectivity", Nature Photonics, 6, pp.
186-194 (2012).
5. Goldberg, L., Taylor, H.F., Weller, J.F., and Bloom,
D.M. Microwave signal generation with injectionlocked
laser diodes", IEEE Electron. Lett., 19, pp. 491-
493 (1983).
6. Jung, T., Shen, J.-L., Tong, D.T.K., Murthy, S., Wu,
M.C., Tanbun-Ek, T., Wang, W., Lodenkamper, R.,
Davis, R., Lembo, L.J. and Brock, J.C. CW injection
locking of a mode-locked semiconductor laser as a
local oscillator comb for channelizing broad-band RF
signals", IEEE Trans. Microwe. Theory Tech., 47, pp.
1225-1232 (1999).
7. Ramos, T. and Seeds, A.J. Fast heterodyne optical
phase-lock loop using double quantum well laser
diodes", IEEE Electron. Lett., 28, p. 1 (1992).
8. Li, W. and Yao, J. Investigation of photonically
assisted microwave frequency multiplication based on
external modulation", IEEE Trans. Microw. Theory
Techn., 58, pp. 3259-3268 (2010).
9. Gao, Y., Wen, A., Yu, Q., Li, N., Lin, G., Xiang,
Sh., and Shang, L. Microwave generation with photonic
frequency sextupling based on cascaded modulators",
IEEE Photon. Technol. Lett., 26, pp. 1199-1202
10. Zhang, J., Chen, H., Chen, M., Wang, T. and Xie,
S. A photonic microwave frequency quadrupler using
two cascaded intensity modulators with repetitious
optical carrier suppression", IEEE Photon. Technol.
Lett., 19, p. 1057 (2007).
11. Mohamed, M., Zhang, X., Hraimel, B. and Wu, K.
Frequency sixupler for millimeter-wave over ber
systems", Opt. Express, 16, p. 10141 (2008).
12. Shi, P., Yu, S., Li, Z., Song, J., Shen, J., Qiao, Y., and
Gu, W. A novel frequency sextupling scheme for optical
mm-wave generation utilizing an integrated dualparallel
Mach-Zehnder modulator", Opt. Commun.,
283, p. 3667 (2010)
13. Ma, J., Xin, X., Yu, J., Yu, Ch., Wang, K., Huang,
H., and Rao, L. Optical millimeter wave generated
by octupling the frequency of the local oscillator", J.
Opt. Netw., 7, pp. 837-845 (2008).
14. Guemri, R., Lucarz, F., Bourreau, D., KamfeIt, C., de
Bougrenet de la Tocnaye, J.-L., and Hall, T. Filterless
millimetre-wave optical generation using optical phase
modulators without DC bias" Proc. IEEE 10th Conf.
Ph.D. Res. Microelectron. Electron. (PRIME), pp. 1-4
15. Gao, Y., Wen, A., Jiang, W., Liang, D., Liu, W.,
and Xiang, Sh. Photonic microwave generation with
frequency octupling based on a DP-QPSK modulator",
IEEE Photon. Technol. Lett., 27, pp. 2260-2263
16. Kumar Raghuwanshi, S., Srivastav, A., and Singh
Athokpam, B. Review on photonic generation of chirp
arbitrary microwave waveforms for remote sensing
application", Journal of Optical Communications, 38,
pp.1-15 (2016).
17. Opti System-user's manual, OPTIWAVE Inc (Version
18. Singh, M. and Kumar Raghuwanshi, S. E ect
of higher order dispersion parameters on optical
millimeter-wave generation using three parallel external
optical modulators", J. Appl. Phys., 117, p. 023116
19. Singh, M. and Raghuwanshi, S.K. Impact of higher
order dispersion on photonically assisted optical
millimeter-wave generated using dual parallel electrooptic
modulators,", Curr. Appl. Phys., 14(12), pp.
1837-1844 (2014).
20. Singh, M. and Raghuwanshi, S.K. Microwave generation
analysis with higher order dispersion parameters
in two cascaded Mach-Zehnder modulators", Opt. Int.
J. Light Electron. Opt., 125, pp. 761-771 (2014).
21. Raghuwanshi, S.K. and Singh, M. E ect of higher
order dispersion terms on microwave generation due
to single mode ber, dispersion shifted ber and nonzero
dispersion shifted ber on lithium niobate machzehnder
modulator", Int. J. Electr. Electron. Eng.
Res., 3(1), pp. 189-208 (2013).
22. Singh, M. and Kumar Raghuwanshi, S. Impact of
dispersion order on optical millimetre-wave generation
based on series optical external modulators without
an optical lter", Optica Applicata, 45(2), pp. 215-226
23. ITU-T, Rec. G.655, Characteristics of Non Zero Dispersion
Shifted Single Mode Optical Fiber Cable, pp.
13-15 (2009).
3590 M. Singh and S. Kumar Raghuwanshi/Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 3584{3590

Volume 25, Issue 6
Transactions on Computer Science & Engineering and Electrical Engineering (D)
November and December 2018
Pages 3584-3590