Optimization of Radiation Characteristic of Time Modulated Circular Geometry Using DEWM

Document Type: Article


1 Department of ECE, Madanpalle Institute of technology and Science, India

2 Department of Electrical Engineering, National Institute of Technology Durgapur, India


In this paper differential evolution with wavelet mutation (DEWM) is applied for the radiation pattern synthesis for circular geometry of antenna array. Two circular geometries have been considered namely; (a) time modulated half symmetric circular array (TMHSCAA) and (b) 9-ring time modulated concentric circular antenna array (TMCCAA). DEWM algorithm is applied to show the performance improvement for the optimal design of TMHSCAA and TMCCAA.  While doing so various other stochastic algorithms like real coded genetic algorithm (RGA), particle swarm optimization (PSO), and differential evolution (DE) are also used for the sake of comparison to establish the superiority of DEWM. For TMHSCAA, elements are symmetrical around to the vertical axis, so the number of parameters to be optimized is reduced, with two control parameters like switching excitation phase of each element. For TMCCAA, two proportional case studies as Case-1 and Case-2 are carried out with different variable parameters. The simulation outcomes show the supremacy of DEWM to be a plausible claimant for scheming the best TMHSCAA and TMCCAA. The simulation tests have also been performed with 20- and 36- element TMHSCAA and 9 rings TMCCAA.  


Main Subjects