References
1. Liu, F.J. He's fractional derivative for heat conduction
in a fractal medium arising in silkworm cocoon hierarchy",
Thermal Science, 19, pp. 1155-1159 (2015).
2. Oldham, K.B. and Spanier, J. The fractional calculus",
Academic Press, New York (1974).
3. Yao, J.J., Kumar, A., and Kumar, S. A fractional
model to describe the Brownian motion of particles
and its analytical solution", Advances in Mechanical
Engineering, 7(12), pp. 1-11 (2015).
4. Gomez-Aguilar, J.F., Razo-Hernandez, R., and Granados
-Lieberman, D. A physical interpretation of fractional
calculus in observables terms: analysis of the
fractional time constant and the transitory response",
Rev. Mex. Fs. 60, pp. 32-38 (2014).
5. Bia, P., Caratelli, D., Mescia, L., Cicchetti, R.,
Maione, G., and Prudenzano, F. A novel FDTD formulation
based on fractional derivatives for dispersive
Havriliak-Negami media", Signal Processing, 107, pp.
312-318 (2015).
6. Mescia, L., Bia, P., and Caratelli, D. Fractional
derivative based FDTD modeling of transient wave
propagation in Havriliak-Negami media", IEEE Transactions
on Microwave Theory and Techniques, 62(9),
pp. 1920-1929 (2014).
7. Ghaziani, R.K., Alidousti, J., and Eshkaftaki, A.B.
Stability and dynamics of a fractional order Leslie-
Gower prey-predator model", Applied Mathematical
Modelling, 40(3), pp. 2075-2086 (2016).
8. Caratelli, D., Mescia, L., Bia, P., and Stukach,
O.V. Fractional-calculus-based FDTD algorithm for
ultrawideband electromagnetic characterization of arbitrary
dispersive dielectric materials", IEEE Transactions
on Antennas and Propagation, 64(8), pp. 3533-
3544 (2016).
9. Kumar, S. A new analytical modelling for fractional
telegraph equation via Laplace transform", Applied
Mathematical Modelling, 38(13), pp. 3154-3163 (2014).
10. Zingales, M. Fractional-order theory of heat transport
in rigid bodies", Communications in Nonlinear
Science and Numerical Simulation, 19(11), pp. 3938-
3953 (2014).
11. Mainardi, F., Luchko, Y., and Pagnini, G. The fundamental
solution of the space-time fractional diusion
equation", arXiv Preprint cond-mat/0702419 (2007).
12. Qi, H.T. and Jiang, X.Y. Solutions of the spacetime
fractional Cattaneo diusion equation", Physica
A. 390, pp. 1876-1883 (2011).
13. Liu, L., Zheng, L., Liu, F., and Zhang, X. Heat
conduction with fractional Cattaneo-Christov upperconvective
derivative
ux model", International Journal
of Thermal Sciences, 112, pp. 421-426 (2017).
14. Ezzat, M.A., El-Bary, A.A., and Fayik, M.A. Fractional
Fourier law with three-phase lag of thermoelasticity",
Mechanics of Advanced Materials and Structures,
20(8), pp. 593-602 (2013).
15. Zhao, J., Zheng, L., Zhang, X., and Liu, F. Convection
heat and mass transfer of fractional MHD
Maxwell
uid in a porous medium with Soret and
Dufour eects". International Journal of Heat and
Mass Transfer, 103, pp. 203-210 (2016).
16. Narayan, O. and Ramaswamy, S. Anomalous heat
conduction in one-dimensional momentum-conserving
systems", Physical review letters, 89(20), p. 200601
(2002).
17. Zheng, L., Liu, Y., and Zhang, X. Slip eects
on MHD
ow of a generalized Oldroyd-B
uid with
fractional derivative", Nonlinear Analysis: Real World
Applications, 13(2), pp. 513-523 (2012).
18. Xiaojun, Y. and Baleanu, D. Fractal heat conduction
problem solved by local fractional variation iteration
method", Thermal Science, 17(2), pp. 625-628 (2013).
19. Povstenko, Y.Z. Fractional radial diusion in a cylinder",
Journal of Molecular Liquids, 137(1), pp. 46-50
(2008).
20. Abouelregal, A.E. Fractional heat conduction equation
for an innitely generalized, thermoelastic, long
solid cylinder", International Journal for Computational
Methods in Engineering Science and Mechanics,
17(5-6), pp. 374-381 (2016).
21. Jiang, X. and Xu, M. The time fractional heat conduction
equation in the general orthogonal curvilinear
coordinate and the cylindrical coordinate systems",
Physica A: Statistical Mechanics and its Applications,
389(17), pp. 3368-3374 (2010).
22. Atangana, A. Derivative with two fractional orders:
A new avenue of investigation toward revolution in
fractional calculus", The European Physical Journal
Plus, 131(10), pp. 1-13 (2016)
23. Liu, Y., Fang, Z., Li, H., and He, S. A mixed nite
element method for a time-fractional fourth-order partial
dierential equation", Applied Mathematics and
Computation, 243, pp. 703-717 (2014).
24. Atangana, A. and Baleanu, D. New fractional derivatives
with nonlocal and non-singular kernel: Theory
and application to heat transfer model", Therm Sci.
20(2), pp. 763-769 (2016).
25. Gomez-Aguilar, J.F., Rosales-Garca, J.J., Bernal-
Alvarado, J.J., Cordova-Fraga, T., and Guzman-
Cabrera, R. Fractional mechanical oscillators". Rev.
Mex. Fs, 58(4), pp. 348-352 (2012).
J.F. Gomez-Aguilar et al./Scientia Iranica, Transactions B: Mechanical Engineering 25 (2018) 2175{2185 2185
26. Mainardi, F. An historical perspective on fractional
calculus in linear viscoelasticity", Fractional Calculus
and Applied Analysis, 15(4), pp. 712-717 (2012).
27. Povstenko, Y. Fractional heat conduction and related
theories of thermoelasticity", In Fractional Thermoelasticity,
Springer International Publishing, pp. 13-33
(2015).