References
1. Kramer, S.L. Geotechnical earthquake engineering",
In Prentice-Hall International Series in Civil Engineering
and Engineering Mechanics, Prentice-Hall,
New Jersey (1996).
2. Idriss, I. Finite element analysis for the seismic
response of earth banks", Journal of Soil Mechanics
& Foundations Div, 94, pp. 617-636 (1968).
3. Celebi, M. Topographical and geological amplications
determined from strong-motion and aftershock
records of the 3 March 1985 Chile earthquake", Bull.
Seismol. Soc. Am., 77, pp. 1147-1167 (1987).
4. Celebi, M. Topographical and geological ampli-
cation: case studies and engineering implications",
Struct. Saf., 10, pp. 199-217 (1991).
5. Bouchon, M. and Barker, J.S. Seismic response of
a hill: the example of Tarzana, California", Bull.
Seismol. Soc. Am., 86, pp. 66-72 (1996).
6. Celebi, M. Northridge (California) earthquake:
unique ground motions and resulting spectral and site
eects", International Conference on Seismic Zonation,
pp. 988-995 (1996).
1092 N. Soltani and M.H. Bagheripour/Scientia Iranica, Transactions A: Civil Engineering 25 (2018) 1083{1093
7. Gazetas, G., Kallou, P., and Psarropoulos, P. Topography
and soil eects in the MS 5.9 Parnitha (Athens)
earthquake: the case of Adames", Nat. Hazards., 27,
pp. 133-169 (2002).
8. Marsan, P., Milana, G., Pugliese, A., and Sano',
T. Local amplication eects recorded by a local
strong motion network during the 1997 Umbria-
Marche Earthquake", Proc. 12th World Conference on
Earthquake Engineering, Aukland New Zealand, Paper
No. 1046 (2000).
9. Soltani, N. and Bagheripour, M.H. Seismic wave
scatter study in valleys using coupled 2D nite element
approach and absorbing boundaries", Scientia Iranica,
24, pp. 110-120 (2017).
10. Di Fiore, V. Seismic site amplication induced by topographic
irregularity: Results of a numerical analysis
on 2D synthetic models", Eng. Geol., 114, pp. 109-115
(2010).
11. Kham, M., Semblat, J.F., and Bouden-Romdhane,
N. Amplication of seismic ground motion in the
Tunis basin: Numerical BEM simulations vs experimental
evidences", Engineering Geology, 154, pp. 80-
86 (2013).
12. Nguyen, K.V. and Gatmiri, B. Evaluation of seismic
ground motion induced by topographic irregularity",
Soil Dyn. Earthquake Eng., 27, pp. 183-188 (2007).
13. He, CH. H., Wang, J.T., Zhang, CH.H., and Jin,
F. Simulation of broadband seismic ground motions
at dam canyons by using a deterministic numerical
approach", Soil Dyn. Earthquake Eng., 76, pp. 136-
144 (2015).
14. Bouckovalas, G.D. and Papadimitriou, A.G. Numerical
evaluation of slope topography eects on seismic
ground motion", Soil Dyn. Earthquake Eng., 25, pp.
547-558 (2005).
15. Zhao, C. and Valliappan, S. Incident P and SV wave
scattering eects under dierent canyon topographic
and geological conditions", Int. J. Numer. Anal. Methods
Geomech., 17, pp. 73-94 (1993).
16. Duzgun, O.A. and Budak, A. A study on soilstructure
interaction analysis in canyon-shaped topographies",
Sadhana., Indian Academy of Sciences.,
35, pp. 255-277 (2010).
17. Kamalian, M., Jafari, M.K., Sohrabi-bidar, A.,
Razmkhah, A., and Gatmiri, B. Time-domain twodimensional
site response analysis of non-homogeneous
topographic structures by a hybrid BE/FE method",
Soil Dyn. Earthquake Eng., 26, pp. 753-765 (2006).
18. Gatmiri, B., Arson, C., and Nguyen, K. Seismic site
eects by an optimized 2D BE/FE method I. Theory,
numerical optimization and application to topographical
irregularities", Soil Dyn. Earthquake Eng., 28, pp.
632-645 (2008).
19. Lo Presti, D., and Ferrini, M., Special Issue of the
Italian Geotechnical Review: The Seismic Response
Analysis at Castelnouvo Garfagnana (2002).
20. Yoshida, N., Seismic Ground Response Analysis,
Springer (2015).
21. Bagheripour, M.H. and Marandi, S.M. A Numerical
model for unbounded soil domain in earthquake SSI
analysis using periodic innite elements", Int. J. Civ.
Eng., 3, pp. 96-111 (2005).
22. Bagheripour, M.H., Rahgozar, R., and Malekinejad,
M. Ecient analysis of SSI problems using innite
elements and wavelet theory", Geomech. Eng., 2(4),
pp. 229-252 (2010).
23. Nimtaj, A. and Bagheripour, M.H. Non-linear seismic
response analysis of the layered soil deposit using
hybrid frequency-time domain (HFTD) approach",
European Journal of Environmental and Civil Engineering,
17, pp. 1039-1056 (2013).
24. Kara, H.F. and Trifunac, M.D. Two-dimensional
earthquake vibrations in sedimentary basins-SH
waves", Soil Dyn. Earthquake Eng., 63, pp. 69-82
(2014).
25. Ghaemian, M. and Sohrabi-Gilani, M. Seismic responses
of arch dams due to non-uniform ground
motions", Scientia Iranica, 19, pp. 1431-1436 (2012).
26. Khanbabazadeh, H. and Iyisan, R. A numerical study
on the 2D behavior of the single and layered clayey
basins", Bull Earthquake Eng., 12, pp. 1515-1536
(2014).
27. Javdanian, H., Jafarian, Y., and Haddad, A. Predicting
damping ratio of ne-grained soils using soft computing
methodology", Arabian Journal of Geosciences,
8, pp. 3959-3969 (2015).
28. Jafarian, Y., Haddad, A., and Javdanian, H. Predictive
model for normalized shear modulus of cohesive
soils", Acta Geodynamica et Geomaterialia, 11, pp. 89-
100 (2014).
29. Soltani, N. and Bagheripour, M.H. Boundary simulation
with dampers using nite element method in nonlinear
seismic ground response analysis", Geodynamics
Research International Bulletin, 3, pp. 16-26 (2015).
30. Lermo, J. and Chavez-Garca, F.J. Site eect evaluation
using spectral ratios with only one station", Bull.
Seismol. Soc. Am., 83, pp. 1574-1594 (1993).
31. LeBrun, B., Hatzfeld, D., Bard, P., and Bouchon,
M. Experimental study of the ground motion on a
large scale topographic hill at Kitherion (Greece)", J.
Seismolog., 3, pp. 1-15 (1999).
32. Fu, L.Y. Rough surface scattering: comparison of
various approximation theories for 2D SH waves", Bull.
Seismol. Soc. Am., 95, pp. 646-663 (2005).
N. Soltani and M.H. Bagheripour/Scientia Iranica, Transactions A: Civil Engineering 25 (2018) 1083{1093 1093
33. Asgari, A. and Bagheripour, M.H. Earthquake
response analysis of soil layers using HFTD approach",
The GeoShanghai 2010 International Conference,
Shanghai, China (2010).
34. Bazrafshan Moghaddam, A. and Bagheripour, M.H.
Ground response analysis using non-recursive matrix
implementation of hybrid frequency-time domain
(HFTD) approach", Scientia Iranica, 18, pp. 1188-
1197 (2011).
35. Tripe, R., Kontoe, S., andWong, T. Slope topography
eects on ground motion in the presence of deep soil
layers", Soil Dyn. Earthquake Eng., 50, pp. 72-84
(2013).
36. Desai, C.S. and Kundu, T., Introductory Finite Element
Method, CRC Press (2001).
37. Brinkgreve, R. Plaxis: nite element code for soil and
rock analyses: 2D-Version 8:[user's guide]", Balkema
(2002).
38. Lysmer, J. and Kuhlemeyer, R.L. Finite dynamic
model for innite media", Journal of Engineering
Mechanics Division, 95, pp. 859-878 (1969).
39. Bouchon, M. Eect of topography on surface motion",
Bull. Seismol. Soc. Am., 63, pp. 615-632 (1973).
40. Pagliaroli, A., Lanzo, G., and D'Elia, B. Numerical
evaluation of topographic eects at the Nicastro ridge
in Southern Italy", J. Earthquake Eng., 15, pp. 404-
432 (2011).