The dependence of conditional spectra on the choice of target periods

Document Type : Article


1 Department of Civil Engineering, Faculty of Engineering, Arak University, Arak, 38156 - 8 - 8349, Iran

2 Department of Civil Engineering, Faculty of Engineering, Arak University, Arak, 38156 - 8 - 8349, Iran.


The dependence of Conditional Mean Spectrum (CMS) and the corresponding standard deviation on different target period values has been investigated in this paper by means of two types of target spectra, i.e. based on Epsilon and Eta indicators. The structural collapse capacities, as well as the mean annual frequency (MAF) of exceeding a limit state, are taken into consideration. The results show that the dependence of Eta-based CMS (ECMS) on the choice of target period is insensitive to the target period in the case of MAF calculation. However, this dependence is meaningfully less in the case of ECMS when compared to CMS in Intensity based ground motion selection. The Sum of the Squared Error (SSE) is utilized to compare different CMS cases. SSE is less in the case of shorter return periods, e.g. 75 years, in comparison with longer return periods, e.g. 2475 years. This dependence is also a function of choosing attenuation relationships. Therefore, four Next Generation Attenuation (NGA) relationships have been employed in this study. In general, ECMS has shown less dependence in all cases when compared with the conventional CMS.


Main Subjects

1.Baker,  J.W.  Conditional  mean  spectrum:   Tool  forground motion selection",ASCE Journal of StructuralEngineering,173(3), pp. 322-331 (2011).
2.Campbell,  K.W.  and  Bozorgnia,  Y.  NGA  groundmotion model for the geometric mean horizontal com-ponent  of  PGA,  PGV,  PGD  and  5%  damped  linearelastic response spectra for periods ranging from 0.01to  10  s",Earthquake   Spectra,24(1),   pp.  139-171(2008).3.Somerville,  P.G.  and  Thio,  H.K.  Development  ofground motion time histories for seismic design",Pro-ceedings of the Ninth Paci c Conference on EarthquakeEngineering Building an Earthquake-Resilient Society,Auckland, New Zealand, 14-16 April (2011).4.Lin, T., Haselton, C.B. and Baker, J.W. Conditional-spectrum-based ground motion selection, Part I: Haz-ard  consistency  for  risk-based  assessments",Earth-quake  Engineering  and  Structural  Dynamics,42(12),pp. 1847-1865 (2013).5.Lin, T., Haselton, C.B. and Baker, J.W. Conditional-Spectrum-based   ground   motion   selection.   Part   II:Intensity-based  assessments  and  evaluation  of  alter-native  target  spectra",Earthquake  Engineering  andStructural Dynamics,42(12), pp. 1867-1884 (2013).6.Baker, J.W. and Jayaram, N. Correlation of spectralacceleration values from NGA ground motion models",Earthquake Spectra,24(1), pp. 299-317 (2008).7.Carlton,  B.  and  Abrahamson,   N.  Issues  and  ap-proaches  for  implementing  conditional  mean  spectrain  practice",Bulletin  of  the  Seismological  Society  ofAmerica,104(1), pp. 503-512 (2014).8.Hashash,  Y.,  Abrahamson,  N.,  Olson,  S.,  Hague,  S.and Kim, B. Conditional mean spectra in site-speci cseismic hazard evaluation for a Major River Crossing inthe Central united states",Earthquake Spectra,31(1),pp. 47-69 (2014).9.Mousavi,  M.,  Ghafory-Ashtiany,  M.  and  Azarbakht,A. A new indicator of elastic spectral shape for thereliable  selection  of  ground  motion  records",Earth-quake  Engineering  and  Structural  Dynamics,40(12),pp. 1403-1416 (2011).10.Azarbakht, A., Shahri, M. and Mousavi, M. Reliableestimation  of  the  mean  annual  frequency  of  collapseby considering ground motion spectral shape e ects",Bulletin of Earthquake Engineering,13(3), pp. 777-797(2015).11.USGS.  United  State  of  Geological  Survey,  Availablefrom:, P. and Cornell, C.A. Seismic hazard anal-ysis  of  nonlinear  structures  I:  Methodology",ASCEJournal of Structural Engineering,120(11), pp. 3320-3344 (1994).13.Cornell,  C.A.,  Jalayer,  F.,  Hamburteger,  R.O.  andFoutch, D.A. Probabilistic basis for 2000 SAC federalemergency  management  agency  steel  moment  frameguidelines",ASCE  Journal  of  Structural  Engineering,128(4), pp. 526-533 (2002).14.Chiou,  B.S.J.  and  Youngs,  R.R.  An  NGA  modelfor the average horizontal component of peak groundmotion  and  response  spectra",Earthquake  Spectra,24(1), pp. 173-215 (2008).15.Abrahamson, N.A. and Silva, W.J. Summary of theAbrahamson & Silva NGA ground motion relations",Earthquake Spectra,24(1), pp. 67-97 (2008).16.Boore,  D.M.  and  Atkinson,  G.M.  Ground-Motionprediction equations for the average horizontal compo-nent of PGA, PGV, and 5%-damped PSA at spectralperiods between 0.01 s and 10.0 s",Earthquake Spectra,24(1), pp. 99-138 (2008).17.Baker, J.W. and Cornell, C.A.,Vector-Valued GroundMotion  Intensity  Measures  for  Probabilistic  SeismicDemand   Analysis,   PEER  Report  2006/08,   Paci cEarthquake  Engineering  Research  Center,  Universityof California, Berkeley, CA (2006).18.Negro, P., Mola, E., Molina, F.J. and Magonette, G.E.Full-scale  testing  of  a  torsionally  unbalanced  three-story non-seismic RC frame",Proceedings  of  the  13thWorld  Conference  on  Earthquake  Engineering,  PaperNo. 968 (2004).19.Fardis, M.N.,Design  of  an  Irregular  Building  for  theSPEAR Project-Description of the 3-Storey Structure,University  of  Patras,  Structures  Laboratory,  Greece(2002).20.Fajfar,   P.,   Dolsek,   M.,   Marusic,   D.  and  Stratan,A.  Pre-  and  post-test  mathematical  modeling  ofa  plan-asymmetric  reinforced  concrete  frame  build-ing",Earthquake  Engineering  and  Structural  Dynam-ics,35(11), pp. 1359-1379 (2006).21.Vamvatsikos,  D.  and  Cornell,  C.A.  Incremental  dy-namic  analysis",Earthquake  Engineering  and  Struc-tural Dynamics,31(3), pp. 491-514 (2002).22.Mousavi, M., Shahri, M. and Azarbakht, A. ECMS:A  new  design  spectrum  for  nuclear  structure  in  highlevels  of  seismic  hazard",Nuclear  Engineering  andDesign,252, pp. 27-33 (2012).