Investigation into stiffness degradation progress in glass/vinylester laminated beams under large deformations

Document Type : Article


1 Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehr an, Ira

2 Department of Civil Engineering, AmirKabir University of Technology, Tehran, Iran

3 Department of Aerospace Engineering, Amirkabir University of Technology, Tehran, Iran


There are many reports indicating that the maximum measured stress in the composite laminated beams under flexural loading appears different from that under tensile loading. The current study compares the results of Hashin failure criteria in the form of stress and strain components for prediction of failure strength in GFRP laminated beams. In the experimental program the composite laminates were tested under tensile and three-point-bending (3PB) loads. Then, it was trying to predict the flexural failure in laminates based on the measured ultimate stresses and strains in the tensile tests. The strain-based failure criteria employed in the FE models could achieve more admissible predictions for maximum load carrying capacity in the laminates compared to the stress-based criteria. Progressive failure analyses showed that due to higher elastic modulus of laminates under bending load, the maximum experienced stress under bending load becomes larger.


Main Subjects

1. Jones, R.M., Mechanics of Composite Materials, Taylor
and Francis Inc., Philadelphia (1999).
2. Vinson, J.R., The Behavior of Sandwich Structures of
Isotropic and Composite Materials, Technomic, Lancaster
3. Bullock, R.E. Strength ratios of composite materials
exure and in tension", J. Compos. Mater., 8, pp.
200-206 (1974).
4. Whitney, J.M. and Knight, M. The relationship
between tensile strength and
exure strength in berreinforced
composites", Exp. Mech., 20(6), pp. 211-216
5. Cattell, M.K. and Kibble, K.A. Determination of
the relationship between strength and test method
for glass bre epoxy composite coupons using Weibull
analysis", Mater. Des., 22, pp. 245-250 (2001).
6. Ullah, H., Harland, A.R., and Silberschmidt, V.V.
Experimental and numerical analysis of damage in
woven GFRP composites under large-de
ection bending",
Appl. Compos. Mater., 19, pp. 769-783 (2012).
7. Jones, R.M. Mechanics of composite materials with
di erent moduli in tension and compression", Final
Scienti c Report, Air force oce of scienti c research
8. Zweben, C. Is there a size e ect in composite materials
and structures?", Composites, 25, pp. 451-454
9. Smith, D.L., Wardle, M.W., and Zweben, C. Test
methods for ber tensile strength, composite
modulus and properties of fabric-reinforced laminates",
In Composite Materials: Testing and Design
(Fifth Conference), ASTM STP 674, S.W. Tsai (ed.),
American Society for Testing and Materials, West
Conshohocken, PA, pp. 228-262 (1979).
10. Tolf, G. and Clarin, P. Comparison between
and tensile modulus of bre composites", Fibre Sci.
Technol., 21, pp. 319-326 (1984).
11. Roopa, T.S., Narasimha-Murthy, H., Sudarshan, K.,
Nandagopan, O.R., Kumar, A., Krishna, M., and
Angadi, G. Mechanical properties of vinylester/glass
and polyester/glass composites fabricated by resin
transfer molding and hand lay-up", J. Vinyl Addit.
Techn., 2, pp. 32-45 (2014).
12. Standard test methods for
exural properties of unreinforced
and reinforced plastics and electrical insulating
materials", ASTM, Designation: D790-07 (2007).
13. Greif, R. and Chapon, E. Investigation of successive
failure modes in graphite/epoxy laminated composite
beams", J. Reinf. Plast. Comp., 12, pp. 602-621
14. Kam, T.Y. and Sher, H.F. Nonlinear and rstply
failure analyses of laminated composite cross-ply
plates", J. Comp. Mater., 29, pp. 463-482 (1995).
15. Echaabi, J., Trochu, F., Pham, X.T., and Ouellet, M.
Theoretical and experimental investigation of failure
and damage progression of graphite-epoxy composites
exural bending test", J. Reinf. Plas. Comp., 15,
pp. 740-755 (1996).
16. Smith, P.A. and Ogin, S.L. On transverse matrix
cracking in cross-ply laminates loaded in simple
bending", Compos. Part A-Appl.s, 30, pp. 1003-1008
17. Ochoa, O. and Reddy, J.N., Finite Element Analysis
of Composite Laminates, Kluwer Academic Publishers,
Dordrecht (1992).
18. Garnich, M.R. and Akula, V.M.K. Review of degradation
models for progressive failure analysis of ber
reinforced polymer composites", Appl. Mech. Rev., 62,
pp. 1-33 (2009).
19. Soden, P.D., Hinton, M.J., and Kaddour, A.S. A
comparison of the predictive capabilities of current
failure theories for composite laminates", Comp. Sci.
Technol., 58, pp. 1225-1254 (1998).
20. Hinton, M.J. and Soden, P.D. Predicting failure in
composite laminates: the background to the exercise",
Comp. Sci. Technol., 58, pp. 1001-1010 (1998).
2402 A.R. Nazari et al./Scientia Iranica, Transactions A: Civil Engineering 25 (2018) 2389{2403
21. Soden, P.D., Hinton, M.J., and Kaddour, A.S. Lamina
properties, lay-up con gurations and loading conditions
for a range of ber-reinforced composite laminates",
Comp. Sci. Technol., 58, pp. 1011-1022 (1998).
22. Farrokhabadi, A., Hosseini-Toudeshky H., and Mohammadi,
B. A generalized micromechanical approach
for the analysis of transverse crack and induced
delamination in composite laminates", Compos.
Struct., 93, pp. 443-455 (2011).
23. Sadeghi, G., Hosseini-Toudeshky, H., and Mohammadi,
B. An investigation of matrix cracking damage
evolution in composite laminates-Development of an
advanced numerical tool", Compos. Struct., 108, pp.
937-950 (2014).
24. Abisset, E., Daghia, F., and Ladeveze, P. On the
validation of a damage mesomodel for laminated composites
by means of open-hole tensile tests on quasiisotropic
laminates", Compos. Part A-Appl.s, 42, pp.
1515-1524 (2011).
25. Ladeveze, P. and Lubineau, G. An enhanced mesomodel
for laminates based on micromechanics", Compos.
Sci. Technol., 62, pp. 533-541 (2002).
26. Yokozeki, T., Aoki, Y., and Ogasawara, T. Experimental
characterization of strength and damage resistance
properties of thin-ply carbon ber/toughened
epoxy laminates", Compos. Struct., 82, pp. 382-389
27. Yokozeki, T., Kuroda, A., Yoshimura, A., Ogasawara,
T., and Aoki, T. Damage characterization in thinply
composite laminates under out-of-plane transverse
loadings", Compos. Struct., 93, pp. 49-57 (2010).
28. Sathish, S., Prasath, J., Reddy, K.S., and Naik, N.K.
Damage evolution in delaminated woven fabric Eglass/
epoxy composite plates under transverse static
patch loading", Int. J. Damage Mech., 22(7), pp. 982-
1005 (2012).
29. Ellul, B., Camilleri, D., and Betts, J.C. A progressive
failure analysis applied to ber reinforced composite
plates subject to out-of-plane bending", Mech. Compos.
Mater., 49(6), pp. 605-620 (2014).
30. Iannucci, L. and Ankersen, J. An energy based damage
model for thin laminated composites", Compos.
Sci. Technol., 66, pp. 934-951 (2006).
31. Iannucci, L. and Willows, M.L. An energy based
damage mechanics approach to modeling impact onto
woven composite materials: Part II. Experimental and
numerical results", Compos. Part A-Appl.s, 38, pp.
540-554 (2007).
32. Doudican, B.M., Doudican, B.M., Zand, B., Amaya,
P., Butalia, T.S., Wolfe, W.E., and Schoeppner A.G.
Strain energy based failure criterion: comparison of
numerical predictions and experimental observations
for symmetric composite laminates subjected to triaxial
loading", J. Compos. Mater., 47(6-7), pp. 847-866
33. McCartney, L.N. Energy-based prediction of progressive
ply cracking and strength of general symmetric
laminates using an homogenisation method", Compos.
Part A-Appl.s, 36, pp. 119-128 (2005).
34. McCartney, L.N. Energy-based prediction of failure
in general symmetric laminates", Eng. Fract. Mech.,
72, pp. 909-930 (2005).
35. Mines, R.A.W. and Alias, A. Numerical simulation
of the progressive collapse of polymer composite sandwich
beams under static loading", Compos. Part AAppl.
s, 33, pp. 11-26 (2002).
36. Irhirane, E.H., Echaabi, J., Aboussaleh, M., and
Hattabi, M. Matrix and bre sti ness degradation
of a quasi-isotrope graphite epoxy laminate under

exural bending test", J. Reinf. Plast. Comp., 28(2),
pp. 201-223 (2009).
37. Standard Test Method for Tensile Properties of Polymer
Matrix Composite Materials, ASTM, Designation:
D3039/D3039M-00 (2000).
38. Batra, R.C., Gopinath, G., and Zheng J.Q. Damage
and failure in low energy impact of ber-reinforced
polymeric composite laminates", Compos Struct., 94,
pp. 540-547 (2012).
39. ABAQUS/Analysis User's Manual, Version 6.10,
ABAQUS Inc. (2010).
40. Camanho, P.P. and Davila, C.G., Mixed-Mode Decohesion
Finite Elements for the Simulation of Delamination
in Composite Materials, NASA/TM-2002-211737
41. Hashin, Z. On elastic behavior of bers reinforced
materials of arbitrary transverse phase geometry", J.
Mech. Phys. Solids, 13, pp. 119-134 (1965).
42. Hashin, Z. and Rotem, A. A fatigue criterion for berreinforced
materials", J. Compos. Mater., 7, pp. 448-
464 (1973).
43. Lapczyk, I. and Hurtado, J.A. Progressive damage
modeling in ber-reinforced materials", Compos. Part
A-Appl.s, 38, pp. 2333-2341 (2007).
44. Barbero, E.J., Cosso, F.A., Roman, R., and Weadon,
T.L. Determination of material parameters for abaqus
progressive damage analysis of E-glass epoxy laminates",
Compos. B-Eng., 46, pp. 211-220 (2013).
45. Maimi, P., Camanho, P.P., Mayugo, J.A., and Davila,
C.G. A continuum damage model for composite
laminates: Part I - constitutive model", Mech. Mater.,
39, pp. 897-908 (2007).
46. Bazant, Z.P. and Oh, B.H. Crack band theory for
fracture of concrete", Mater. Struct., 16, pp. 155-177
47. Maimi, P., Camanho, P.P., Mayugo J.A., and Davila,
C.G. A thermodynamically consistent damage model
for advanced composites", NASA/TM-2006-214282
48. Wisnom, M.R. and Atkinson, J.W. Reduction in
tensile and
exural strength of unidirectional glass
bre-epoxy with increasing specimen size", Compos.
Struct., 38(1-4), pp. 405-411 (1997).
A.R. Nazari et al./Scientia Iranica, Transactions A: Civil Engineering 25 (2018) 2389{2403 2403
49. Huang, Z.M. Progressive
exural failure analysis of
laminated composites with knitted fabric reinforcement",
Mech. Mater., 36, pp. 239-260 (2004).
50. Wisnom, M.R. The relationship between tensile and

exural strength of unidirectional composites", J.
Compos. Mater., 26, pp. 1173-1180 (1992).