Stability Analysis of Dry Sandy Slopes Adjacent toDynamic Compaction Process 


1 School of Engineering, Kharazmi University, Tehran, Iran

2 School of Engineering Kharazmi University P.O.Box 15614, Tehran, Iran


Dynamic compaction is a useful economic method for improving different soil types, especially loose sandy fills. However, the method has been rarely used in the vicinity of slopes due to stability concerns. In this research, dynamic compaction method adjacent to slope edge was numerically simulated using 2D plain-strain finite element models. Stability of slope models under different compaction energies and slope geometries at the same initial static factor of safety (FS) was investigated considering different stability criteria. These criteria include peak particle velocity (PPV) or peak particle displacement (PPD) on the slope, rate of change in plastic volumetric strains, yield stress ratio on the induced slip surface and the ratio of crater depths in flat and sloped models. Safe compaction distances from slope heel were calculated for different criteria and it was concluded that PPV criterion yields the most conservative distances but PPD criterion almost shows the smallest safe distances. Based on comparison of different criteria, it was concluded that combination of yield stress ratio and rate of plastic volumetric strain achieves the most acceptable safe compaction distance values for consideration in slope stability analyses.