Guest editorial: Special issue on collective behavior of nonlinear dynamical networks

Authors

1 Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran

2 - Faculty of Natural Sciences and Mathematics, University of Maribor, Koroskacesta 160, 2000 Maribor, Slovenia. - Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan. - Complexity Science Hub Vienna, Josefstadterstraf3e 39, 1080 Vienna, Austria

3 Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran


1.         Li, Z., Duan, Z., Chen, G., and Huang, L. Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint", IEEE Trans. Circuits Syst. I Regul. Pap., 57, pp. 213{224 (2009).        2.     Perc, M., Gomez-Gardenes, J., Szolnoki, A., Flora,        L.      M., and Moreno, Y. Evolutionary dynamics of group interactions on structured populations: a re-view", J. R. Soc. Interface, 10, p. 20120997 (2013).        3. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., and Hwang, D.-U. Complex networks: Structure and dynamics", Phys. Rep., 424, pp. 175{308 (2006).        4.   Estrada, E. Introduction to complex networks: struc-ture and dynamics", in: Evol. Equations Appl. Nat. Sci., Springer, pp. 93{131 (2015).        5. Gao, Z.-K., Small, M., and Kurths, J. Complex network analysis of time series", EPL (Europhys. Lett.), 116, p. 50001 (2017).        6.        Arenas, A., Daz-Guilera, A., Kurths, J., Moreno, Y., and Zhou, C. Synchronization in complex networks", Phys. Rep., 469, pp. 93{153 (2008).        7.        Pikovsky, A., Kurths, J., Rosenblum, M., and Kurths, J.           Synchronization: a universal concept in nonlinear sciences", Cambridge university press (2003).        8.   Boccaletti, S., Kurths, J., Osipov, G., Valladares, D., and Zhou, C. The synchronization of chaotic systems", Phys. Rep., 366, pp. 1{101 (2002).        9.    Huang, X., Xu, W., Liang, J., Takagaki, K., Gao, X., and Wu, J.-Y. Spiral wave dynamics in neocortex", Neuron, 68, pp. 978{990 (2010).        10.   Parastesh, F., Jafari, S., Azarnoush, H., Shahriari, Z., Wang, Z., Boccaletti, S., and Perc, M., Chimeras, Phys. Rep., 898, pp. 1{114 (2020).        11.            Abrams, D.M. and Strogatz, S.H. Chimera states for coupled oscillators", Phys. Rev. Lett., 93, p. 174102 (2004).        12.        Lu, J. and Chen, G. A time-varying complex dynam-ical network model and its controlled synchronization criteria", IEEE Trans. Autom. Control, 50, pp. 841{ 846 (2005).        13.     Mobayen, S., Kingni, S.T., Pham, V.-T., Nazarimehr, F., and Jafari, S. Analysis, synchronisation and cir-cuit design of a new highly nonlinear chaotic system", Int. J. Syst. Sci., 49, pp. 617{630 (2018). 14. Rajagopal, K., Khalaf, A.J.M., Parastesh, F., Moroz, I., Karthikeyan, A., and Jafari, S. Dynamical behav-ior and network analysis of an extended Hindmarsh-Rose neuron model", Nonlinear Dyn., 98, pp. 477{487 (2019).        15. Tavazoei, M.S. and Haeri, M. Synchronization of chaotic fractional-order systems via active sliding mode controller", Physica A, 387, pp. 57{70 (2008).        16.              Belykh, I., Hasler, M., Lauret, M., and Nijmeijer,        H.               Synchronization and graph topology", Int. J. Bifurcation Chaos, 15, pp. 3423{3433 (2005).        17.          Pecora, L.M. and Carroll, T.L. Synchronization in chaotic systems", Phys. Rev. Lett., 64, p. 821 (1990).        18.                Panahi, S., Nazarimehr, F., Jafari, S., Sprott, J.C., Perc, M., and Repnik, R. Optimal synchronization of circulant and non-circulant oscillators", Appl. Math. Comput., 394, p. 125830 (2021).        19.            Asheghan, M.M., Beheshti, M.T.H., and Tavazoei,        M.       S. Robust synchronization of perturbed Chen's fractional-order chaotic systems", Commun. Nonlinear Sci. Numer. Simul., 16, pp. 1044{1051 (2011).        20.              Asheghan, M.M., Mguez, J., Hamidi-Beheshti, M.T., and Tavazoei, M.S. Robust outer synchronization between two complex networks with fractional order dynamics", Chaos, 21, p. 033121 (2011).        21. Bao, H.-B. and Cao, J.-D. Projective synchronization of fractional-order memristor-based neural networks", Neural Networks, 63, pp. 1{9 (2015).        22. Pecora, L.M. and Carroll, T.L. Master stability func-tions for synchronized coupled systems", Phys. Rev. Lett., 80, p. 2109 (1998).        23.             Nazarimehr, F., Panahi, S., Jalili, M., Perc, M., Jafari, S., and Fercec, B. Multivariable coupling and synchronization in complex networks", Appl. Math. Comput., 372, p. 124996 (2020).        24. Belykh, I., De Lange, E., and Hasler, M. Synchroniza-tion of bursting neurons: What matters in the network topology", Phys. Rev. Lett., 94, p. 188101 (2005).        25.                Osipov, G.V., Pikovsky, A.S., Rosenblum, M.G., and Kurths, J. Phase synchronization effects in a lattice of nonidentical R􀀁ossler oscillators", Phys. Rev. E, 55,        p.               2353 (1997).        26.        Chavez, M., Hwang, D.-U., Amann, A., Hentschel, H., and Boccaletti, S. Synchronization is enhanced in weighted complex networks", Phys. Rev. Lett., 94,        p.  218701 (2005).        27.   Rosenblum, M.G. and Pikovsky, A.S. Detecting direc-tion of coupling in interacting oscillators", Phys. Rev. E, 64, p. 045202 (2001).        28.              Belykh, I.V., Belykh, V.N., and Hasler, M. Blinking model and synchronization in small-world networks with a time-varying coupling", Physica D, 195, pp. 188{206 (2004).        29.   Sorrentino, F. and Ott, E. Adaptive synchronization of dynamics on evolving complex networks", Phys. Rev. Lett., 100, p. 114101 (2008).30. Porri, M., Stilwell, D.J., and Bollt, E.M. Synchro-nization in random weighted directed networks", IEEE Trans. Circuits Syst. I Regul. Pap., 55, p. 3170-3177 (2008). 31.    Wang, Q., Chen, G., and Perc, M. Synchronous bursts on scale-free neuronal networks with attractive and repulsive coupling", PLoS One, 6, p. e15851 (2011).        32.   Wang, Q., Perc, M., Duan, Z., and Chen, G. Synchro-nization transitions on scale-free neuronal networks due tofinite information transmission delays", Phys. Rev. E, 80, p. 026206 (2009).        33.                Lu, J., Yu, X., Chen, G., and Cheng, D. Character-izing the synchronizability of small-world dynamical networks", IEEE Trans. Circuits Syst. I Regul. Pap., 51, pp. 787{796 (2004).        34.          Reggiani, A. Accessibility, connectivity and resilience in complex networks", in Accessibility Analysis and Transport Planning, Edward Elgar Publishing (2012).        35.           Boccaletti, S., Bianconi, G., Criado, R., Del Genio,        C.               I., Gomez-Gardenes, J., Romance, M., Sendina-Nadal, I., Wang, Z., and Zanin, M. The structure and dynamics of multilayer networks", Phys. Rep., 544, pp. 1{122 (2014).        36.                Rakshit, S., Majhi, S., Bera, B.K., Sinha, S., and Ghosh, D. Time-varying multiplex network: In-tralayer and interlayer synchronization", Phys. Rev. E, 96, p. 062308 (2017). 37.            Pikovsky, A.S. and Kurths, J. Coherence resonance in a noise-driven excitable system", Phys. Rev. Lett., 78, p. 775 (1997).        38. Zakharova, A., Vadivasova, T., Anishchenko, V., Kos-eska, A., and Kurths, J. Stochastic bifurcations and coherencelike resonance in a self-sustained bistable noisy oscillator", Phys. Rev. E, 81, p. 011106 (2010).        39.          Zhang, X., Boccaletti, S., Guan, S., and Liu, Z.Explosive synchronization in adaptive and multilayer networks", Phys. Rev. Lett., 114, p. 038701 (2015).        40.                Zou, Y., Pereira, T., Small, M., Liu, Z., and Kurths, J.Basin of attraction determines hysteresis in explosive synchronization", Phys. Rev. Lett., 112, p. 114102 (2014).        41.                Dahms, T., Lehnert, J., and Sch􀀁oll, E. Cluster and group synchronization in delay-coupled networks", Phys. Rev. E, 86, p. 016202 (2012).        42.              Pecora, L.M., Sorrentino, F., Hagerstrom, A.M., Mur-phy, T.E., and Roy, R. Cluster synchronization and isolated desynchronization in complex networks with symmetries", Nature Commun., 5, pp. 1{8 (2014).        43.               Majhi, S., Bera, B.K., Ghosh, D., and Perc, M.Chimera states in neuronal networks: A review", Phys. Life Rev., 28, pp. 100{121 (2019).        44.                Rakshit, S., Faghani, Z., Parastesh, F., Panahi, S., Jafari, S., Ghosh, D., and Perc, M. Transitions from chimeras to coherence: An analytical approach by means of the coherent stability function", Phys. Rev. E, 100, p. 012315 (2019).        45.          Fu, X., Small, M., and Chen, G., Propagation Dy-namics on Complex Networks: Models, Methods and Stability Analysis, John Wiley & Sons (2013). 46.   Ma, J., Hu, B., Wang, C., and Jin, W. Simulating the formation of spiral wave in the neuronal system", Nonlinear Dyn., 73, pp. 73{83 (2013).        47.          Rajagopal, K., Parastesh, F., Azarnoush, H., Hatef, B., Jafari, S., and Berec, V. Spiral waves in externally excited neuronal network: Solvable model with a monotonically differentiable magnetic ux", Chaos, 29, p. 043109 (2019).        48.  Nazarimehr, F., Shahbodaghy, F., Hatef, B., and Rajagopal, K. How can we measure the slowing down in healthy and ischemic stroke individuals?", Sci. Iran., 28(3) (2021). 49.    Wang, Z., Hussain, I., Pham, V.T., and Kapitaniak, T.Discontinuous coupling and transition from synchro-nization to an intermittent transient chimera state", Sci. Iran., 28(3) (2021).        50.          Vock, S., Berner, R., Yanchuk, S., and Sch􀀁oll, E. Ef-fect of diluted connectivities on cluster synchronization of adaptively coupled oscillator networks", Sci. Iran., 28(3) (2021).        51.             Wang, Z., Zhang, P.Z., Moroz, I., and Karthikeyan,        A. Complex dynamics of a Fitzhugh-Rinzel neuron model considering the effect of electromagnetic induc-tion", Sci. Iran., 28(3) (2021).