Effect of diluted connectivities on cluster synchronization of adaptively coupled oscillator networks

Document Type : Article


1 Institute of Theoretical Physics, Technische Universitat Berlin, Hardenbergstrabe 36, 10623 Berlin, Germany

2 - Institute of Theoretical Physics, Technische Universitat Berlin, Hardenbergstrabe 36, 10623 Berlin, Germany - Institute of Mathematics, Technische Universitat Berlin, Strabe des 17. Juni 136, 10623 Berlin, Germany

3 Institute of Mathematics, Technische Universitat Berlin, Strabe des 17. Juni 136, 10623 Berlin, Germany

4 -Institute of Theoretical Physics, Technische Universitat Berlin, Hardenbergstrabe 36, 10623 Berlin, Germany -Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universitat, Philippstrabe 13, 10115 Berlin, Germany -Potsdam Institute for Climate Impact Research, Telegrafenberg A 31, 14473 Potsdam, Germany



Synchronization in networks of oscillatory units is an emergent phenomenon that has been observed in various systems, from power grids to ensembles of nerve cells. Many real-world networks have adaptive properties, meaning that their connectivities change with time, depending on the dynamical state of the system. Networks of adaptively coupled oscillators show various synchronization phenomena, such as hierarchical multifrequency clusters, traveling waves, or chimera states. While these self-organized patterns have been previously studied on all-to-all coupled networks, this work extends the investigations towards more complex networks, analyzing the influence of random network topologies for various degrees of dilution of the connectivities. Using numerical and analytical approaches, we investigate the robustness of multicluster states on networks of adaptively coupled Kuramoto-Sakaguchi oscillators against the random dilution of the underlying network topology. We utilize the master stability approach for adaptive networks in order to highlight the interplay between adaptivity and topology. With this, we show the robustness of multifrequency cluster states to diluted connectivities.


References      1. Newman, M.E.J. The structure and function of complex      networks", SIAM Review, 45(2), pp. 167{256      (2003).      2. Boccaletti, S., Pisarchik, A.N., del Genio, C.I., and      Amann, A., Synchronization: From Coupled Systems      to Complex Networks, Cambridge: Cambridge University      Press (2018).      3. Pecora, L.M., Carroll, T.L., Johnson, G.A., Mar, D.J.,      and Heagy, J.F. Fundamentals of synchronization in      chaotic systems, concepts, and applications", Chaos,      7(4), pp. 520{543 (1997).      1680 S. Vock et al./Scientia Iranica, Transactions D: Computer Science & ... 28 (2021) 1669{1684      4. Pikovsky, A., Rosenblum, M., and Kurths, J., Synchronization:      A Universal Concept in Nonlinear Sciences,      Cambridge: Cambridge University Press, 1st edition      (2001).      5. Strogatz, S.H. Exploring complex networks", Nature,      410, pp. 268{276 (2001).      6. Yanchuk, S., Maistrenko, Y., and Mosekilde, E. Synchronization      of time-continuous chaotic oscillators",      Chaos, 13(1), pp. 388{400 (2003).      7. Arenas, A., D__az-Guilera, A., Kurths, J., Moreno, Y.,      and Zhou, C. Synchronization in complex networks",      Phys. Rep., 469(3), pp. 93{153 (2008).      8. Huygens, C., Horologium Oscillatorium: Sive de Motu      Pendulorum Ad Horologia Aptato Demonstrationes      Geometricae, Christiaan Huygens, 1st edition (1673).      9. Kuramoto, Y., Chemical Oscillations, Waves and Turbulence,      Berlin: Springer-Verlag (1984).      10. Dai, X., Li, X., Guo, H., Jia, D., Perc, M., Manshour,      P., Wang, Z., and Boccaletti, S. Discontinuous      transitions and rhythmic states in the D-dimensional      Kuramoto model induced by a positive feedback with      the global order parameter", Phys. Rev. Lett., 125(19),      p. 194101 (2020).      11. Yanchuk, S., Maistrenko, Y., and Mosekilde, E. Partial      synchronization and clustering in a system of      di_usively coupled chaotic oscillators", Math. Comp.      Simul., 54, pp. 491{508 (2001).      12. Sorrentino, F. and Ott, E. Network synchronization      of groups", Phys. Rev. E, 76(5), p. 056114 (2007).      13. Dahms, T., Lehnert, J., and Scholl, E. Cluster      and group synchronization in delay-coupled networks",      Phys. Rev. E, 86(1), p. 016202 (2012).      14. Miyakawa, K., Okano, T., and Yamazaki, T. Cluster      synchronization in a chemical oscillator network with      adaptive coupling", Journal of the Physical Society of      Japan, 82(3), p. 034005 (2013).      15. Zhang, Y. and Motter, A.E. Symmetry-independent      stability analysis of synchronization patterns", SIAM      Rev., 62(4), pp. 817{836 (2020).      16. Kuramoto, Y. and Battogtokh, D. Coexistence of      coherence and incoherence in nonlocally coupled phase      oscillators", Nonlin. Phen. in Complex Sys., 5(4), pp.      380{385 (2002).      17. Abrams, D.M. and Strogatz, S.H. Chimera states      for coupled oscillators", Phys. Rev. Lett., 93(17), p.      174102 (2004).      18. Motter, A.E. Nonlinear dynamics: Spontaneous synchrony      breaking", Nat. Phys., 6(3), pp. 164{165      (2010).      19. Panaggio, M.J. and Abrams, D.M. Chimera states:      Coexistence of coherence and incoherence in networks      of coupled oscillators", Nonlinearity, 28, p. R67      (2015).      20. Scholl, E. Synchronization patterns and chimera      states in complex networks: interplay of topology and      dynamics", Eur. Phys. J. Spec. Top., 225, pp. 891{919      (2016).      21. Sawicki, J., Omelchenko, I., Zakharova, A., and Scholl,      E. Delay controls chimera relay synchronization in      multiplex networks", Phys. Rev. E, 98, p. 062224      (2018).      22. Omel'chenko, O.E. and Knobloch, E. Chimerapedia:      coherence-incoherence patterns in one, two and three      dimensions", New J. Phys., 21(9), p. 093034 (2019).      23. Andrzejak, R.G., Ruzzene, G., Scholl, E., and      Omelchenko, I. Two populations of coupled quadratic      maps exhibit a plentitude of symmetric and symmetry      broken dynamics", Chaos, 30(3), p. 033125 (2020).      24. Drauschke, F., Sawicki, J., Berner, R., Omelchenko,      I., and Scholl, E. E_ect of topology upon relay      synchronization in triplex neuronal networks", Chaos,      30, p. 051104 (2020).      25. Scholl, E., Zakharova, A., and Andrzejak, R.G.,      Chimera States in Complex Networks. Research Topics,      Front. Appl. Math. Stat., Lausanne: Frontiers      Media SA (2020). Ebook.      26. Zakharova, A., Chimera Patterns in Networks: Interplay      between Dynamics, Structure, Noise, and Delay.      Understanding Complex Systems, Springer (2020).      27. Scholl, E. Chimeras in physics and biology: Synchronization      and desynchronization of rhythms", Nova      Acta Leopoldina, 425, pp. 67{95 (2020). Invited contribution.      28. Parastesh, F., Jafari, S., Azarnoush, H., Shahriari, Z.,      Wang, Z., Boccaletti, S., and Perc, M. Chimeras",      Phys. Rep., 898, pp. 1{114 (2021).      29. Singer, W. Neuronal synchrony: A versatile code      review for the de_nition of relations", Neuron, 24, pp.      49{65 (1999).      30. Wang, X.J. Neurophysiological and computational      principles of cortical rhythms in cognition", Phys.      Rev., 90(3), pp. 1195{1268 (2010).      31. Fell, J. and Axmacher, N. The role of phase synchronization      in memory processes", Nat. Rev. Neurosci.,      12(2), pp. 105{118 (2011).      32. Hammond, C., Bergman, H., and Brown, P. Pathological      synchronization in Parkinson's disease: networks,      models and treatments", Trends Neurosci., 30, pp.      357{364 (2007).      33. Schi_, S.J. Towards model-based control of Parkinson's      disease", Phil. Trans. R. Soc. A, 368, pp. 2269{      2308 (2010).      34. Kromer, J.A. and Tass, P.A. Long-lasting desynchronization      by decoupling stimulation", Phys. Rev.      Research, 2(3), p. 033101 (2020).      35. Kromer, J.A., Khaledi-Nasab, A., and Tass, P.A.      Impact of number of stimulation sites on long-lasting      desynchronization e_ects of coordinated reset stimulation",      Chaos, 30(8), p. 083134 (2020).      S. Vock et al./Scientia Iranica, Transactions D: Computer Science & ... 28 (2021) 1669{1684 1681      36. Lehnertz, K., Bialonski, S., Horstmann, M.T., Krug,      D., Rothkegel, A., Staniek, M., and Wagner, T.      Synchronization phenomena in human epileptic brain      networks", J. Neurosci. Methods, 183(1), pp. 42{48      (2009).      37. Mormann, F., Lehnertz, K., David, P., and Elger,      C.E. Mean phase coherence as a measure for phase      synchronization and its application to the EEG of      epilepsy patients", Physica D, 144(3{4), pp. 358{369      (2000).      38. Jiruska, P., de Curtis, M., Je_erys, J.G.R., Schevon,      C.A., Schi_, S.J., and Schindler, K. Synchronization      and desynchronization in epilepsy: controversies and      hypotheses", J. Physiol., 591(4), pp. 787{797 (2013).      39. Jirsa, V.K., Stacey, W.C., Quilichini, P.P., Ivanov,      A.I., and Bernard, C. On the nature of seizure      dynamics", Brain, 137, p. 2210 (2014).      40. Rothkegel, A. and Lehnertz, K. Irregular macroscopic      dynamics due to chimera states in small-world networks      of pulse-coupled oscillators", New J. Phys., 16,      p. 055006 (2014).      41. Andrzejak, R.G., Rummel, C., Mormann, F., and      Schindler, K. All together now: Analogies between      chimera state collapses and epileptic seizures", Sci.      Rep., 6, p. 23000 (2016).      42. Chouzouris, T., Omelchenko, I., Zakharova, A.,      Hlinka, J., Jiruska, P., and Scholl, E. Chimera states      in brain networks: empirical neural vs. modular fractal      connectivity", Chaos, 28(4), p. 045112 (2018).      43. Gerster, M., Berner, R., Sawicki, J., Zakharova, A.,      Skoch, A., Hlinka, J., Lehnertz, K., and Scholl, E.      FitzHugh-Nagumo oscillators on complex networks      mimic epileptic-seizure-related synchronization phenomena",      Chaos, 30, p. 123130 (2020).      44. Pecora, L.M. and Carroll, T.L. Master stability functions      for synchronized coupled systems", Phys. Rev.      Lett., 80(10), pp. 2109{2112 (1998).      45. Brechtel, A., Gramlich, P., Ritterskamp, D., Drossel,      B., and Gross, T. Master stability functions reveal      di_usion-driven pattern formation in networks", Phys.      Rev. E, 97(3), p. 032307 (2018).      46. Berner, R., Sawicki, J., and Scholl, E. Birth and stabilization      of phase clusters by multiplexing of adaptive      networks", Phys. Rev. Lett., 124(8), p. 088301 (2020).      47. Choe, C.U., Dahms, T., Hovel, P., and Scholl, E.      Controlling synchrony by delay coupling in networks:      from in-phase to splay and cluster states", Phys. Rev.      E, 81(2), p. 025205(R) (2010).      48. Flunkert, V., Yanchuk, S., Dahms, T., and Scholl, E.      Synchronizing distant nodes: a universal classi_cation      of networks", Phys. Rev. Lett., 105, p. 254101 (2010).      49. Greenshields, C. Master stability function for systems      with two coupling delays", Private Communication      (2010).      50. Lehnert, J., Dahms, T., Hovel, P., and Scholl, E. Loss      of synchronization in complex neural networks with      delay", Europhys. Lett., 96, p. 60013 (2011).      51. Flunkert, V., Yanchuk, S., Dahms, T., and Scholl, E.      Synchronizability of networks with strongly delayed      links: a universal classi_cation", Contemp. Math.,      48, pp. 134{148 (2013). English version: J. of Math.      Sciences (Springer) (2014).      52. Keane, A., Dahms, T., Lehnert, J., Suryanarayana,      S.A., Hovel, P., and Scholl, E. Synchronisation in      networks of delay-coupled type-I excitable systems",      Eur. Phys. J. B, 85(12), p. 407 (2012).      53. Wille, C., Lehnert, J., and Scholl, E. Synchronizationdesynchronization      transitions in complex networks:      An interplay of distributed time delay and inhibitory      nodes", Phys. Rev. E, 90, p. 032908 (2014).      54. Kyrychko, Y.N., Blyuss, K.B., and Scholl, E. Synchronization      of networks of oscillators with distributeddelay      coupling", Chaos, 24, p. 043117 (2014).      55. Lehnert, J. Controlling synchronization patterns      in complex networks", Springer Theses, Heidelberg:      Springer (2016).      56. Huddy, S.R. and Sun, J. Master stability islands for      amplitude death in networks of delaycoupled oscillators",      Phys. Rev. E, 93, p. 052209 (2016).      57. Borner, R., Schultz, P., Unzelmann, B., Wang, D.,      Hellmann, F., and Kurths, J. Delay master stability      of inertial oscillator networks", Phys. Rev. Research,      2(2), p. 023409 (2020).      58. Sorrentino, F. Synchronization of hypernetworks of      coupled dynamical systems", New J. Phys., 14, p.      033035 (2012).      59. Mulas, R., Kuehn, C., and Jost, J. Coupled dynamics      on hypergraphs: Master stability of steady states and      synchronization", Phys. Rev. E, 101(6), p. 062313      (2020).      60. Berner, R., Vock, S., Scholl, E., and Yanchuk, S.      Desynchronization transitions in adaptive networks",      Phys. Rev. Lett., 126(2), p. 028301 (2021).      61. Gross, T. and Blasius, B. Adaptive coevolutionary      networks: a review", J. R. Soc. Interface, 5(20), pp.      259{271 (2008).      62. Aoki, T. and Aoyagi, T. Co-evolution of phases and      connection strengths in a network of phase oscillators",      Phys. Rev. Lett., 102, p. 034101 (2009).      63. Kasatkin, D.V., Yanchuk, S., Scholl, E., and Nekorkin,      V.I. Self-organized emergence of multi-layer structure      and chimera states in dynamical networks with adaptive      couplings", Phys. Rev. E, 96(6), p. 062211 (2017).      64. Gerstner, W., Kempter, R., von Hemmen, J.L.,      and Wagner, H. A neuronal learning rule for sub1682      S. Vock et al./Scientia Iranica, Transactions D: Computer Science & ... 28 (2021) 1669{1684      millisecond temporal coding", Nature, 383(6595), pp.      76{78 (1996).      65. Abbott, L.F. and Nelson, S. Synaptic plasticity:      taming the beast", Nat. Neurosci., 3(11), pp. 1178{      1183 (2000).      66. Dan, Y. and Poo, M.M. Spike timing-dependent      plasticity: from synapse to perception", Physiol. Rev.,      86(3), pp. 1033{1048 (2006).      67. Clopath, C., Busing, L., Vasilaki, E., and Gerstner,      W. Connectivity reects coding: a model of voltagebased      STDP with homeostasis", Nat. Neurosci., 13(3),      pp. 344{352 (2010).      68. Seliger, P., Young, S.C., and Tsimring, L.S. Plasticity      and learning in a network of coupled phase oscillators",      Phys. Rev. E, 65(4), p. 041906 (2002).      69. Berner, R., Scholl, E., and Yanchuk, S. Multiclusters      in networks of adaptively coupled phase oscillators",      SIAM J. Appl. Dyn. Syst., 18(4), pp. 2227{2266      (2019).      70. Sakaguchi, H. and Kuramoto, Y. A soluble active      rotater model showing phase transitions via mutual      entertainment", Prog. Theor. Phys, 76(3), pp. 576{581      (1986).      71. Asl, M.M., Valizadeh, A., and Tass, P.A. Dendritic      and axonal propagation delays may shape neuronal      networks with plastic synapses", Front. Physiol., 9, p.      1849 (2018).      72. Daido, H. Order function and macroscopic mutual entrainment      in uniformly coupled limitcycle oscillators",      Prog. Theor. Phys., 88(6), pp. 1213{1218 (1992).      73. Rodrigues, F.A., Peron, T.K.D.M., Ji, P., and Kurths,      J. The Kuramoto model in complex networks", Phys.      Rep., 610, pp. 1{98 (2016).      74. Ren, Q. and Zhao, J. Adaptive coupling and enhanced      synchronization in coupled phase oscillators", Phys.      Rev. E, 76(1), p. 016207 (2007).      75. Aoki, T. and Aoyagi, T. Self-organized network of      phase oscillators coupled by activity dependent interactions",      Phys. Rev. E, 84, p. 066109 (2011).      76. Picallo, C.B. and Riecke, H. Adaptive oscillator      networks with conserved overall coupling: Sequential      _ring and near-synchronized states", Phys. Rev. E,      83(3), p. 036206 (2011).      77. Ha, S.Y., Noh, S.E., and Park, J. Synchronization of      Kuramoto oscillators with adaptive couplings", SIAM      J. Appl. Dyn. Syst., 15(1), pp. 162{194 (2016).      78. Avalos-Gayt_an, V., Almendral, J.A., Leyva, I., Battiston,      F., Nicosia, V., Latora, V., and Boccaletti,      S. Emergent explosive synchronization in adaptive      complex networks", Phys. Rev. E, 97(4), p. 042301      (2018).      79. Maistrenko, Y., Lysyansky, B., Hauptmann, C.,      Burylko, O., and Tass, P.A. Multistability in the      Kuramoto model with synaptic plasticity", Phys. Rev.      E, 75(6), p. 066207 (2007).      80. Kasatkin, D.V. and Nekorkin, V.I. Dynamics of the      phase oscillators with plastic couplings", Radiophysics      and Quantum Electronics, 58(11), pp. 877{891 (2016).      81. Nekorkin, V.I. and Kasatkin, D.V. Dynamics of a      network of phase oscillators with plastic couplings",      AIP Conf. Proc., 1738(1), p. 210010 (2016).      82. Aoki, T. and Aoyagi, T. Scale-free structures emerging      from co-evolution of a network and the distribution      of a di_usive resource on it", Phys. Rev. Lett., 109(20),      p. 208702 (2012).      83. Gushchin, A., Mallada, E., and Tang, A. Synchronization      of phase-coupled oscillators with plastic      coupling strength", In Information Theory and Applications      Workshop ITA 2015, San Diego, CA, USA, pp.      291{300, IEEE (2015).      84. Timms, L. and English, L.Q. Synchronization in      phase-coupled Kuramoto oscillator networks with axonal      delay and synaptic plasticity", Phys. Rev. E,      89(3), p. 032906 (2014).      85. Kasatkin, D.V. and Nekorkin, V.I. Synchronization      of chimera states in a multiplex system of phase      oscillators with adaptive couplings", Chaos, 28, p.      093115 (2018).      86. Kachhvah, A.D., Dai, X., Boccaletti, S., and Jalan,      S. Interlayer Hebbian plasticity induces _rst-order      transition in multiplex networks", New J. Phys., 22,      p. 122001 (2020).      87. Berner, R., Fialkowski, J., Kasatkin, D.V., Nekorkin,      V.I., Yanchuk, S., and Scholl, E. Hierarchical frequency      clusters in adaptive networks of phase oscillators",      Chaos, 29(10), p. 103134 (2019).      88. Kasatkin, D.V. and Nekorkin, V.I. The e_ect of      topology on organization of synchronous behavior in      dynamical networks with adaptive couplings", Eur.      Phys. J. Spec. Top., 227, p. 1051 (2018).      89. Berner, R., Polanska, A., Scholl, E., and Yanchuk,      S. Solitary states in adaptive nonlocal oscillator networks",      Eur. Phys. J. Spec. Top., 229(12{13), pp.      2183{2203 (2020).