Photocatalytic C-H bond activation by surface anchoring of [CoII(Saloph)(His)] complex on Ag-TiO2 nanocomposite

Document Type : Article


- Department of Chemistry, University of Kurdistan, Sanandaj, P.O. Box, 66179-416, Iran - Research Center of Nanotechnology, University of Kurdistan, Sanandaj, P.O. Box, 66177-15175, Iran


A novel heterojunction plasmonic photocatalyst [Co(Saloph)(His)]/Ag-TiO2 as a nanohybrid material was applied for the photocatalytic activity towards the C-H bond cleavage of alcohols to the aldehyde using different oxidants, O2, H2O2, or TBHP under irradiation of visible-light and NHPI as co-catalyst. It was synthesized by photo-deposition of metallic silver nanoparticles on titanium oxide surface and follow it, modification with cobalt(II) Saloph complex under ultrasonic agitation condition using histidine linker to reach a photocatalyst under 50 nm in size and band gap 2.64 eV. The [Co(Saloph)(His)]/Ag-TiO2 nanohybrid was characterized with EDS, XRD, DRS, FT-IR, PL spectroscopies, FESEM imaging, and BET technique. The size This three-component plasmonic photocatalyst revealed high photocatalytic efficiency with 95% conversion and 99% selectivity in aerobic conditions. The higher photocatalytic performance of [Co(Saloph)(His)]/Ag-TiO2 than the Co(Saloph)/TiO2 and Ag-TiO2 NPs should be related to the localized surface plasmonic resonance (LSPR) of these motives. So, this three-component nanohybrid provides an efficient interfacial electron transfer process through a synergistic effect that allows producing a nanocatalyst, with advantages of stability and fast selective C-H bond activation alcohols at ambient temperature using O2 as an inexpensive environmental friendly oxidant.


s1.       Liu, M., Wang, H., Zeng, H., and Li, C. J., “Silver(I) as a widely applicable, homogeneous catalyst for aerobic oxidation of aldehydes toward carboxylic acids in water-"silver mirror": From stoichiometric to catalytic”, Sci. Adv., 1(2), p. e1500020 (2015).
2.        Enache, D. I., Edwards, J. K., Landon, P., Solsona-Espriu, B., Carley, A. F., Herzing, A. A., Watanabe, M., Kiely, C. J., Knight, D. W., and Hutchings, G. J., “Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalyst”, Science, 311(5759), pp. 362–365 (2006).
3.        Palmisano, G., Yurdakal, S., Augugliaro, V., Loddo, V., and Palmisano, L., “Photocatalytic Selective Oxidation of 4‐Methoxybenzyl Alcohol to Aldehyde in Aqueous Suspension of Home‐Prepared Titanium Dioxide Catalyst”, Adv. Synth. Catal., 349(6), pp. 964–970 (2007).
4.        Ten Brink, G. J., Arends, I. W. C. E., and Sheldon, R. A., “Green, catalytic oxidation of alcohols in water”, Science, 287(5458), pp. 1636–1639 (2000).
5.        Lang, X., Ma, W., Chen, C., Ji, H., and Zhao, J., “Selective aerobic oxidation mediated by TiO2 photocatalysis”, Acc. Chem. Res., 47(2), pp. 355–363 (2014).
6.        Li, W., Wu, Z., Wang, J., Elzatahry, A. A., and Zhao, D., “A perspective on mesoporous TiO2 materials”, Chem. Mater., 26(1), pp. 287–298 (2014).
7.        Meng, A., Zhang, L., Cheng, B., and Yu, J., “Dual Cocatalysts in TiO2 Photocatalysis”, Adv. Mater., 31(30), p. 1807660 (2019).
8.        Bagheri, S., Muhd Julkapli, N., and Bee Abd Hamid, S., “Titanium dioxide as a catalyst support in heterogeneous catalysis”, Sci. World J., 2014 (2014).
9.        Zhou, R., Lin, S., Zong, H., Huang, T., Li, F., Pan, J., and Cui, J., “Continuous Synthesis of Ag/TiO2 Nanoparticles with Enhanced Photocatalytic Activity by Pulsed Laser Ablation”, J. Nanomater., 2017 (2017).
10.      Subramanian, V., Wolf, E., and Kamat, P. V., “Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films?”, J. Phys. Chem. B, 105(46), pp. 11439–11446 (2001).
11.      Kisch, H., “Semiconductor photocatalysis - Mechanistic and synthetic aspects”, Angew. Chemie - Int. Ed., 52(3), pp. 812–847 (2013).
12.      Irie, H., Miura, S., Kamiya, K., and Hashimoto, K., “Efficient visible light-sensitive photocatalysts: Grafting Cu(II) ions onto TiO2 and WO3 photocatalysts”, Chem. Phys. Lett., 457(1–3), pp. 202–205 (2008).
13.      Kisch, H., Zang, L., Lange, C., Maier, W. F., Antonius, C., and Meissner, D., “Modified, amorphous titania - A hybrid semiconductor for detoxification and current generation by visible light”, Angew. Chemie - Int. Ed., 37(21), pp. 3034–3036 (1998).
14.      Jin, Q., Arimoto, H., Fujishima, M., and Tada, H., “Manganese oxide-surface modified titanium (IV) dioxide as environmental catalyst”, Catalysts, 3(2), pp. 444–454 (2013).
15.      Sang, L., Zhao, Y., and Burda, C., “TiO2nanoparticles as functional building blocks”, Chem. Rev., 114(19), pp. 9283–9318 (2014).
16.      Al Jitan, S., Palmisano, G., and Garlisi, C., “Synthesis and surface modification of TiO2-based photocatalysts for the conversion of CO2”, Catalysts, 10(2), p. 227 (2020).
17.      Chen, Y.-C. C., Pu, Y.-C. C., and Hsu, Y.-J. J., “Interfacial charge carrier dynamics of the three-component In 2O 3-TiO 2-Pt heterojunction system”, J. Phys. Chem. C, 116(4), pp. 2967–2975 (2012).
18.      Habibi-Yangjeh, A., Feizpoor, S., Seifzadeh, D., and Ghosh, S., “Improving visible-light-induced photocatalytic ability of TiO2 through coupling with Bi3O4Cl and carbon dot nanoparticles”, Sep. Purif. Technol., 238(December), p. 116404 (2020).
19.      Tian, Y. and Tatsuma, T., “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles”, J. Am. Chem. Soc., 127(20), pp. 7632–7637 (2005).
20.      Elemike, E. E., Onwudiwe, D. C., Wei, L., Chaogang, L., and Zhiwei, Z., “Noble metal –semiconductor nanocomposites for optical, energy and electronics applications”, Sol. Energy Mater. Sol. Cells, 201(March), p. 110106 (2019).
21.      Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., and Bahnemann, D. W., “Understanding TiO2photocatalysis: Mechanisms and materials”, Chem. Rev., 114(19), pp. 9919–9986 (2014).
22.      Fattahi, A., Arlos, M. J., Bragg, L. M., Liang, R., Zhou, N., and Servos, M. R., “Degradation of natural organic matter using Ag-P25 photocatalyst under continuous and periodic irradiation of 405 and 365 nm UV-LEDs”, J. Environ. Chem. Eng., 9(1), p. 104844 (2021).
23.      Higashimoto, S., “Titanium-dioxide-based visible-light-sensitive photocatalysis: Mechanistic insight and applications”, Catalysts, 9(2), p. 201 (2019).
24.      Muflikhun, M. A., Frommelt, M. C., Farman, M., Chua, A. Y., and Santos, G. N. C., “Structures, mechanical properties and antibacterial activity of Ag/TiO2 nanocomposite materials synthesized via HVPG technique for coating application”, Heliyon, 5(4), p. e01475 (2019).
25.      Muflikhun, M. A., Chua, A. Y., and Santos, G. N. C., “Structures, Morphological Control, and Antibacterial Performance of Ag/TiO 2 Micro-Nanocomposite Materials”, Adv. Mater. Sci. Eng., 2019, pp. 1–12 (2019).
26.      Jafarpour, M., Kargar, H., and Rezaeifard, A., “A synergistic effect of a cobalt Schiff base complex and TiO2 nanoparticles on aerobic olefin epoxidation”, RSC Adv., 6(82), pp. 79085–79089 (2016).
27.      Chen, Y., Huang, W., He, D., Situ, Y., and Huang, H., “Construction of heterostructured g-C3N4/Ag/TiO 2 microspheres with enhanced photocatalysis performance under visible-light irradiation”, ACS Appl. Mater. Interfaces, 6(16), pp. 14405–14414 (2014).
28.      Hoque, M. A. and Guzman, M. I., “Photocatalytic activity: Experimental features to report in heterogeneous photocatalysis”, Materials (Basel)., 11(10) (2018).
29.      Sarvestani, A. H. and Mohebbi, S., “Spectroscopy and electrochemistry of cobalt(III) salophen complexes”, J. Chem. Res., (4), pp. 257–260 (2006).
30.      Boghaei, D. M. and Mohebi, S., “Novel unsymmetrical tetradentate Schiff base complexes of cobalt (II) and palladium (II) with N2O2 donor sets”, J. Chem. Res. - Part S, (6), pp. 224–226 (2001).
31.      Safaei, E. and Mohebbi, S., “Photocatalytic activity of nanohybrid Co-TCPP@TiO2/WO3 in aerobic oxidation of alcohols under visible light”, J. Mater. Chem. A, 4(10) (2016).
32.      Ghobadifard, M. and Mohebbi, S., “Novel nanomagnetic Ag/β-Ag2WO4/CoFe2O4 as a highly efficient photocatalyst under visible light irradiation”, New J. Chem., 42(12), pp. 9530–9542 (2018).
33.      Askari, P., Mohebbi, S., and Do, T. O., “High performance plasmonic activation of Ag on β-Ag2WO4/BiVO4 as nanophotocatalyst for oxidation of alcohols by incident visible light”, J. Photochem. Photobiol. A Chem., 367, pp. 56–65 (2018).
34.      Mohebbi, S., Bahrami, S., and Shangaie, A., “Heterotrinuclear manganese(II) and vanadium(IV) Schiff base complexes as epoxidation catalysts”, Transit. Met. Chem., 36(4), pp. 425–431 (2011).
35.      Cai, T., Liu, Y., Wang, L., Zhang, S., Ma, J., Dong, W., Zeng, Y., Yuan, J., Liu, C., and Luo, S., “‘dark Deposition’ of Ag Nanoparticles on TiO2: Improvement of Electron Storage Capacity to Boost ‘memory Catalysis’ Activity”, ACS Appl. Mater. Interfaces, 10(30), pp. 25350–25359 (2018).
36.      Zhao, H., Sun, W., Miao, C., and Zhao, Q., “Aerobic oxidation of secondary alcohols using NHPI and iron salt as catalysts at room temperature”, J. Mol. Catal. A Chem., 393, pp. 62–67 (2014).
37.      Ishii, Y., Sakaguchi, S., and Iwahama, T., “Innovation of Hydrocarbon Oxidation with Molecular Oxygen and Related Reactions”, Adv. Synth. Catal., 343(5), pp. 393–427 (2001).