1 References
[1] Rezaeian, S. and Der Kiureghian, A., "A stochastic ground motion model with separable temporal and spectral nonstationarities", Earthquake Eng. Struct. Dyn., 37(13), pp. 1565-1584 (2008).
[2] Stafford, P., Sgobba, S., and Marano, G., "An energy-based envelope function for the stochastic simulation of earthquake accelerograms", Soil Dyn. Earthquake Eng., 29(pp. 1123-1133 (2009).
[3] Maechling, P. J., Silva, F., Callaghan, S., and Jordan, T. H., "SCEC Broadband Platform: System architecture and software implementation", Seismol. Res. Lett., 86(1), pp. 27-38 (2014).
[4] Sun, X., Hartzell, S., and Rezaeian, S., "Ground‐Motion Simulation for the 23 August 2011, Mineral, Virginia, Earthquake Using Physics‐Based and Stochastic Broadband Methods", Bull. Seismol. Soc. Am., 105(5), pp. 2641-2661 (2015).
[5] Kramer, S. L., Geotechnical earthquake engineering vol. 80: Prentice Hall Upper Saddle River, NJ, (1996).
[6] Li, Y., Conte, J. P., and Barbato, M., "Influence of time‐varying frequency content in earthquake ground motions on seismic response of linear elastic systems", Earthquake Eng. Struct. Dyn., 45(8), pp. 1271-1291 (2016).
[7] Kiureghian, A. D. and Crempien, J., "An Evolutionary Model for Earthquake Ground Motion", Struct. Saf., 6(pp. 235-246 (1989).
[8] Beresnev, I. and Atkinson, G., "FINSIM: A FORTRAN program for simulating stochastic acceleration", Seismol. Res. Lett., 69(pp. 27-32 (1998).
[9] Motazedian, D. and Atkinson, G., "Stochastic finite-fault modeling based on a dynamic corner frequency", Bull. Seismol. Soc. Am., 95(3), pp. 995-1010 (2005).
[10] Papadimitriou, K., "Stochastic characterization of strong ground motion and application to structural response," Pasadena, CA EERL 90-03, 1990.
[11] Pousse, G., Bonilla, L., Cotton, F., and Margerin, L., "Non stationary stochastic simulation of strong ground motion time histories including natural variability: Application to the K-net Japanese database", Bull. Seismol. Soc. Am., 96(6), pp. 2103–2117 (2006).
[12] Yamamoto, Y. and Baker, J. W., "Stochastic model for earthquake ground motion using wavelet packets", Bull. Seismol. Soc. Am., 103(6), pp. 3044-3056 (2013).
[13] Shinozuka, M. and Deodatis, G., "Stochastic process models for earthquake ground motion", Probabilist. Eng. Mech., 3(3), pp. 114-123 1988/09/01/ (1988).
[14] Chen, J., Kong, F., and Peng, Y., "A stochastic harmonic function representation for non-stationary stochastic processes", Mech. Syst. Signal. Pr., 96(pp. 31-44 2017/11/01/ (2017).
[15] Rezaeian, S. and Der Kiureghian, A., "Simulation of synthetic ground motions for specified earthquake and site characteristics", Earthquake Engineering & Structural Dynamics, 39(10), pp. 1155-1180 (2010).
[16] Waezi, Z. and Rofooei, F. R., "On the Evolutionary Characteristics of the Acceleration Records Generated From Linear Time-Variant Systems ", Sci. Iranica, 26(6), pp. 2817-2831 (2017).
[17] Waezi, Z. and Rofooei, F. R., "Stochastic Non-Stationary Model for Ground Motion Simulation Based on Higher-Order Crossing of Linear Time Variant Systems", J. Earthquake Eng., pp. 1-28 (2016).
[18] Waezi, Z., Rofooei, F. R., and Hashemi, M. J., "A Multi-Peak Evolutionary Model for Stochastic Simulation of Ground Motions Based on Time-Domain Features", J. Earthquake Eng., pp. 1-37 (2018).
[19] Alderucci, T., Muscolino, G., and Urso, S., "Stochastic analysis of linear structural systems under spectrum and site intensity compatible fully non-stationary artificial accelerograms", Soil Dyn. Earthquake Eng., 126(p. 105762 2019/11/01/ (2019).
[20] Kiureghian, A. D. and Fujimura, K., "Nonlinear stochastic dynamic analysis for performance‐based earthquake engineering", Earthquake Eng. Struct. Dyn., 38(5), pp. 719-738 (2009).
[21] Ferrer, I. and Sánchez-Carratalá, C. R., "Efficient estimation of the peak factor for the stochastic characterization of structural response to non-stationary ground motions", Struct. Saf., 59(pp. 32-41 (2016).
[22] Michaelov, G., Lutes, L. D., and Sarkani, S., "Extreme value of response to nonstationary excitation", J. Eng. Mech., 127(4), pp. 352-363 (2001).
[23] Barbato, M. and Vasta, M., "Closed-form solutions for the time-variant spectral characteristics of non-stationary random processes", Probabilist. Eng. Mech., 25(1), pp. 9-17 2010/01/01/ (2010).
[24] Barbato, M. and Conte, J. P., "Structural reliability applications of nonstationary spectral characteristics", J. Eng. Mech., 137(5), pp. 371-382 (2011).
[25] Clough, R. W. and Penzien, J., Dynamics of structures, 2 ed. Berkeley, CA USA: Computers & Structures, Inc., (1993).
[26] Barbato, M. and Conte, J. P., "Time-Variant Reliability Analysis of Linear Elastic Systems Subjected to Fully Nonstationary Stochastic Excitations", J. Eng. Mech., 141(6), p. 04014173 (2015).
[27] Alderucci, T. and Muscolino, G., "Time–frequency varying response functions of non-classically damped linear structures under fully non-stationary stochastic excitations", Probabilist. Eng. Mech., 54(pp. 95-109 2018/10/01/ (2018).
[28] Yu, H., Wang, B., Gao, Z., and Li, Y., "An exact and efficient time-domain method for random vibration analysis of linear structures subjected to uniformly modulated or fully non-stationary excitations", J. Sound Vibrat., 488(p. 115648 2020/12/08/ (2020).
[29] Zhao, N. and Huang, G., "Efficient Nonstationary Stochastic Response Analysis for Linear and Nonlinear Structures by FFT", J. Eng. Mech., 145(5), p. 04019023 (2019).
[30] Xu, J. and Feng, D.-C., "Stochastic dynamic response analysis and reliability assessment of non-linear structures under fully non-stationary ground motions", Struct. Saf., 79(pp. 94-106 2019/07/01/ (2019).
[31] Xu, J., Ding, Z., and Wang, J., "Extreme value distribution and small failure probabilities estimation of structures subjected to non-stationary stochastic seismic excitations", Struct. Saf., 70(pp. 93-103 2018/01/01/ (2018).
[32] Waezi, Z. and Rofooei, F. R., "Stochastic Non-Stationary Model for Ground Motion Simulation Based on Higher-Order Crossing of Linear Time Variant Systems", J. Earthquake Eng., 21(1), pp. 123-150 2017/01/02 (2017).
[33] Amin, M. and Ang, A. H., "Nonstationary stochastic models of earthquake motions", J. Eng. Mech., 94(2), pp. 559-584 (1968).
[34] Priestley, M. B., "Evolutionary spectra and non-stationary processes", J. Roy. Stat. Soc. Ser. B. (Stat. Method.), 27(2), pp. 204-237 (1965).
[35] Senthilnathan, A. and Lutes, L. D., "Nonstationary maximum response statistics for linear structures", J. Eng. Mech., 117(2), pp. 294-311 (1991).
[36] Shinozuka, M. and Yang, J.-N., "Peak structural response to non-stationary random excitations", J. Sound Vibrat., 16(4), pp. 505-517 (1971).
[37] Vanmarcke, E. H., "On the distribution of the first-passage time for normal stationary random processes", Journal of applied mechanics, 42(1), pp. 215-220 (1975).
[38] Corotis, R. B., Vanmarcke, E. H., and Cornell, A. C., "First passage of nonstationary random processes", J. Eng. Mech., 98(2), pp. 401-414 (1972).
[39] Michaelov, G., Sarkani, S., and Lutes, L., "Spectral characteristics of nonstationary random processes—response of a simple oscillator", Struct. Saf., 21(3), pp. 245-267 (1999).
[40] Lutes, L. D. and Sarkani, S., Random vibrations: analysis of structural and mechanical systems. Burlington, MA 01803, USA: Butterworth-Heinemann, (2004).