Preparation and investigation of optical properties and photocatalytic activity of SnO2/GO thin films

Document Type : Article

Authors

1 College of Education for Pure Sciences, University of Kerbala, Iraq

2 Borhan Nano Scale Company, Mashhad, Iran

10.24200/sci.2021.54336.3706

Abstract

In this paper, SnO2-pure and SnO2/GO thin films with different concentrations of graphene oxide (0, 1, 2, 3 and 4 g/ml) were synthesized using spin coating method. The synthesized thin films were used to study the structural, morphology, chemical, optical and photocatalytic degradation of Methyl Orange (MO) under UV light irradiation by X-ray diffraction (XRD) spectroscopy, field emission scanning electron microscopy (FESEM), Raman spectroscopy, Ultraviolet–visible spectroscopy and UV light respectively. The XRD results of graphene oxide show that the peak is very sharp with high intensity, which indicates a very good crystallinity of the GO structure. The band gape value of SnO2/GO thin films increase by increasing of GO concentration. Under UV light irradiation, the photocatalytic activity of synthesized samples was measured using Methyl Orange dye. The obtained results indicate that by adding graphene oxide concentration, the photocatalytic activity of the tin oxide thin film increases.

Keywords


References       1. Paul, E., Andreas, K., Russell, G.E., et al. Band       structure of indium oxide: Indirect versus direct band       gap", Phys. Rev, B., 75(15), pp. 153205-1{153205-4       (2007).       2. Geeta, S., Raj, R., and Abhai, M. Band-gap narrowing       and band structure in degenerate tin oxide (SnO2)       _lms", Phys. Rev. B., 44(11), pp. 5672{ 5680 (1991).       3. Je_erson, P.H., Hat_eld, S.A., Veal, T.D., King,       P.D.C., and McConville, C.F. Bandgap and e_ective       mass of epitaxial cadmium oxide", Appl. Phys. Lett.,       92(2), pp. 022101{022103 (2008).       4. Leila, M., Boshra, G.S., and Abrishami, M. E_ects       of Mn doping on electrical properties of ZnO thin       _lms", Modern Physics Letters B., 30(4), pp. 1650024{       1650028 (2016).       5. Andreas, E. and Wilfried, L. Solution-deposited PEDOT       for transparent conductive applications", MRS       Bulletin, 36(10), pp. 794{798 (2011).       6. Kazuhiro, N. and Kohtaro, T. Production of transparent       conductive _lms with inserted SiO2 anchor       layer, and application to a resistive touch panel",       Electronics and Communications in Japan, 84(7), pp.       39{44 (2001).       7. Maciej, S., Katarzyna, Z., Sylwia, W., et al. Comparison       of ZnO: Al, ITO and carbon nanotube transparent       conductive layers in exible solar cells applications",       Materials Science and Engineering: B., 177(15), pp.       1292{1298 (2012).       8. Lee-May, H., Chih-Wei, H., Han-Chang, L., et al.       Photovoltaic electrochromic device for solar cell module       and self-powered smart glass applications", Solar       Energy Materials and Solar Cells, 99, pp. 154{159       (2012).       9. Maciej, S., Katarzyna, Z., Miros law, S., and Micha l,       G. AZO layers deposited by PLD method as exible       transparent emitter electrodes for solar cells", Microelectronic       Engineering, 127, pp. 57{60 (2014).       10. Qiu, Y., Hermawan, H., Gordon, I., and Poortmans, J.       Direct current sputtered aluminum-doped zinc oxide       _lms for thin crystalline silicon heterojunction solar       cell", Materials Chemistry and Physics, 141(2), pp.       744{751 (2013).       11. Beck, A., Bednorz, J.G., Gerber, Ch., Rossel, C.,       and Widmer, D. "Reproducible switching e_ect in       thin oxide _lms for memory applications", Appl. Phys.       Lett., 77(1), pp. 139{141 (2000).       12. Radhouane, B.H.T., Takayuki, B., Yutaka, O., et       al. Tin doped indium oxide thin _lms: Electrical       properties", Journal of Applied Physics, 83(5), pp.       2631{2645 (1998).       13. Kim, H. and Gilmore, C.M. Electrical, optical, and       structural properties of indium-tin-oxide thin _lms       for organic light-emitting devices", Journal of Applied       Physics, 86(11), pp. 6451{6461 (1999).       14. Kim, H., Piqu_e, A., Horwitz, J.S., Mattoussi, H., et al.       Indium tin oxide thin _lms for organic light-emitting       devices", Appl. Phys. Lett., 74(23), pp. 3444{3446       (1999).       15. Tadatsugu, M. Substitution of transparent conducting       oxide thin _lms for indium tin oxide transparent       electrode applications", Thin Solid Films, 516(7), pp.       1314{1321 (2008).       16. Kim, H.J. Horwitz, S., Kushto, G., et al. E_ect of       _lm thickness on the properties of indium tin oxide       thin _lms", Journal of Applied Physics, 88(10), pp.       6021{6025 (2000).       17. Peelaers, H., Kioupakis, E., and Van de Walle, C.G.       Fundamental limits on optical transparency of transparent       conducting oxides: Free-carrier absorption in       SnO2", Appl. Phys. Lett., 100(1), pp. 011914{011917       (2012).       18. Dattoli, E.N., Wan, Q., Guo, W., Chen, Y., Pan,       X., and Lu, W. Fully transparent thin-_lm transistor       devices based on SnO2 nanowires", Nano Lett, 7(9),       pp. 2463{2469 (2007).       19. Bagheri-Mohagheghi, M.M. and Shokooh-Saremi, M.       The inuence of Al doping on the electrical, optical       A.H.A. Jalaukhan et al./Scientia Iranica, Transactions F: Nanotechnology 28 (2021) 1908{1916 1915       and structural properties of SnO2 transparent conducting       _lms deposited by the spray pyrolysis technique",       J. Phys. D: Appl. Phys., 37(8), pp. 1248{1253 (2004).       20. Ogale, S.B., Choudhary, R.J., Buban, J.P., et al. High       temperature ferromagnetism with a giant magnetic       moment in transparent co-doped SnO(2-delta)", J.       Phys Rev Lett., 91(7), pp. 0772052{0772059 (2003).       21. Philip, J., Punnoose, A., Kim, B.I., et al. Carriercontrolled       ferromagnetism in transparent oxide semiconductors",       Nature Materials, 5(4), pp. 298{304       (2006).       22. HarinathBabu, S., Kaleemulla, S.N., Madhusudhana,       R., and Krishnamoorthi, C. Indium oxide: A transparent,       conducting ferromagnetic semiconductor for       spintronic applications", Journal of Magnetism and       Magnetic Materials, 416(33), pp. 66{74 (2016).       23. Anshu, S., Achary, S.N., Manjanna, J., Jayakumar, O.,       et al. Colloidal Fe-doped indium oxide nanoparticles:       Facile synthesis, structural, and magnetic properties",       J. Phys. Chem. C., 113(9), pp. 3600{3606 (2009).       24. Wang, C., Wang, X., Xu, B.Q., Zhao, J., Mai, B.,       Peng, P., Sheng, G., and Fu, J. Enhanced photocatalytic       performance of nanosized coupled ZnO/SnO2       photocatalysts for methyl orange degradation", Journal       of Photochemistry and Photobiology A: Chemistry,       168(1), pp. 47{52 (2004).       25. Ramanathan, S., Radhika, N., Padmanabhan, D.,       Durairaj, A., Selvin, S.P., Lydia, S., Kavitha, S., and       Vasanthkumar, S. Eco-friendly synthesis of CRGO       and CRGO/SnO2 nanocomposite for photocatalytic       degradation of methylene green dye", ACS Omega 5,       pp. 158{169 (2020).       26. Leila, S. and Anjali, A. Graphene oxide synthesized       by using modi_ed hummers approach", International       Journal of Renewable Energy and Environmental Engineering,       02(1), pp. 58{63 (2014).       27. Zhang, M., Lei, D., Du, Z., Yin, X., Chen, L.,       Li, Q., Wang, Y., and Wang, T. Fast synthesis       of SnO2/graphene composites by reducing graphene       oxide with stannous ions", J. Mater. Chem., 21(6),       pp. 1673{1676 (2011).       28. Suito, K., Kawai, N., and Masuda, Y. High pressure       synthesis of orthorhombic SnO2", Materials Research       Bulletin, 10(7), pp. 677{680 (1975).       29. Mahesh, B., Pallavi, S., and Veda, R. Synthesis of       nanocrystalline SnO2 powder by amorphous citrate       route", Materials Letters, 57(9{10), pp. 1604{1611       (2003).       30. Shohany, B.G. and Zak, A.K. Doped ZnO nanostructures       with selected elements - Structural, morphology       and optical properties: A review," Ceramics International,       46(5), pp. 5507{7000 (2020).       31. Yoo, D.T., Cuong, V., and Pham, V. Enhanced       photocatalytic activity of graphene oxide decorated on       TiO2 _lms under UV and visible irradiation", Current       Applied Physics, 11(3), pp. 805{808 (2011).       32. Wang, W., Kapitanova, O., Ilanchezhiyan, P., et       al. Self-assembled MoS2/rGO nanocomposites with       tunable UV-IR absorption", RSC Adv., 49(8), pp.       2410{2417 (2018).       33. Saleem, A., Ullah, N., Khursheed, K., et al. Graphene       oxide{TiO2 nanocomposite _lms for electron transport       applications", Journal of electronic materials, 47(7),       pp. 3749{3756 (2018).       34. Mahmood, H., Habib, A., Mujahid, M., Tanveer,       M., Javed, S., and Jamil, A. Band gap reduction       of titania thin _lms using graphene nano-sheets",       Materials Sciencein Semiconductor Processing, 24(1)       pp. 193{199 (2014).       35. Razeghizadeh, A.R., Zalaghi, L., Kazeminezhad, I.,       Rafee, V. Growth and optical properties investigation       of pure and al-doped SnO2 nanostructures by sol-gel       method", Iran. J. Chem. Chem. Eng., 36(5) pp. 1{8       (2017).       36. Camacho-L_opez M.A., Galeana-Camacho J.R., Esparza-       Garc_a, A., et al. Characterization of nanostructured       SnO2 _lms deposited by reactive DC-magnetron       sputtering", Super_cies y Vac__o, 26(3) pp. 95{99       (2013).       37. Soumia, B. and Nasr-Eddine, H. Concentration in-       uence on structural and optical properties of SnO2       thin _lms synthesized by the spin coating technique",       Journal of Physics: Conference Series, 758(1), p.       012007 (2016).       38. Syed Irfan, L. Fu, L., et al. E_ect of graphene oxide       nano-sheets on structural, morphological and photocatalytic       activity of BiFeO3-based nanostructures",       Nanomaterials (Basel), 9(2) p. 1337 (2019).       39. Karimabad, A.E.B., Ghanbari, D., Salavati-Niasari,       M., and Nejati-Moghadam, L. Photo-catalyst tin       dioxide: synthesis and characterization di_erent morphologies       of SnO2 nanostructures and nanocomposites",       J Mater Sci: Mater Electron, 29, pp. 1238{1245       (2015).       40. Damian, W., Michal, M., Michalina, K., et al. In-       uence of Nd-doping on photocatalytic properties of       TiO2 nanoparticles and thin _lm coatings", International       Journal of Photoenergy, 18(51) pp. 29928{29942       (2014).